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Abstract

Flight delays impact airlines, airports and passengers. Delay
prediction is crucial during the decision-making process for
all players in commercial aviation, and in particular for air-
lines to meet their on-time performance objectives. Although
many machine learning approaches have been experimented
with, they fail in (i) predicting delays in minutes with low
errors (less than 15 minutes), (ii) being applied to small carri-
ers i.e., low cost companies characterized by a small amount
of data. This work presents a Long Short-Term Memory
(LSTM) approach to predicting flight delay, modeled as a
sequence of flights across multiple airports for a particular
aircraft throughout the day. We then suggest a transfer learn-
ing approach between heterogeneous feature spaces to train
a prediction model for a given smaller airline using the data
from another larger airline. Our approach is demonstrated to
be robust and accurate for low cost airlines in Europe.

Introduction

Delay is an important indicator of the quality of service in
any transportation system. It drives the decision-making
process of all players in the commercial aviation industry.
It is particularly important for airlines as it is a key factor for
measuring their on-time performance. Many machine learn-
ing approaches have been applied previously to the prob-
lem of predicting delay, however these generally suffer from
poor performance when predicting delays in minutes with
low error (less than 15 minutes), and when applied to small
carriers, i.e. low-cost companies characterized by a small
amount of data. Our approach has demonstrated to be ro-
bust and accurate for low cost airlines in Europe.

The commercial aviation industry defines delay as the du-
ration of time that a flight is late or postponed, and con-
siders any flight that arrives more than 15 minutes past its
scheduled gate arrival time as delayed. In 2013 over 30%
of flights were delayed by more than five minutes in Europe
and by more than fifteen minutes in the US, (ANAC 2017)
and (CODA Digest 2017).

The impact of flight delay on airlines is multifold, ranging
from clearly defined outcomes such as compensation owed
to passengers, late fines, and increased operational costs, to
more intangible consequences for airline brand perception
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and customer loyalty. As a result of this delay, airlines suf-
fer penalties, fines, higher rates of customer complaints, and
additional operation costs such as crew and aircraft retention
in airports.

Towards these issues, our contribution is twofold:

Contribution 1: In this work we propose an approach for
training an LSTM network to model the flight delay. We
model sequences of flights for a given aircraft over a period
of time with trips to multiple airports, and aim to find a good
estimator of future flight delay by learning the context of
past flight delay from historic airline data.

Contribution 2: As low cost airline companies only hold
a small volume of data due to the small fleet size, lim-
ited routes or crew, we suggest a transfer learning approach
which uses data sourced from other airlines and domains to
improve the performance of the initial LSTM model.

It appears intuitive that learning an estimator to predict
the delay for multiple airlines should be easier than learning
each in isolation. We show that the model trained on both
data sets outperforms the model trained just on the smaller
data set.

In the following section we give a summary of differ-
ent flight delay prediction methods and transfer learning
approaches over heterogeneous feature spaces, which are
highly relevant to our application. Section 3 presents how
we addressed the problem of predicting sequences of flight
delays under very limited data constraints. Section 4 reports
experimental results and lessons learned from low cost air-
line companies in Europe. Finally we draw some conclu-
sions and discuss future work.

Related work

We review literature related to our application area, i.e., the
domains of route / flight delay prediction and propagation,
as well as recent work on transfer learning in heterogeneous
feature spaces.

Route Delay: Flight delay prediction can be modeled in
many ways, depending on the objectives of the research. The
use of machine learning for analysis of flight systems has
become increasingly prevalent, particularly in classification
and prediction applications.

Previous methods applied to the problem of predicting
airplane route delay include the k-Nearest Neighbour algo-



rithm (Zonglei, Jiandong, and Guansheng 2008), random
forests (Rebollo and Balakrishnan 2014), adaptive networks
based on fuzzy inference systems (Khanmohammadi et al.
2014), and Markov decision processes incorporating a rein-
forcement learning strategy (Balakrishna et al. 2008). These
systems report good performance when the prediction is a
single instance that is close in time, but note a concurrent de-
crease in accuracy as the forecast horizon grows. We address
this problem by considering sequence modeling of flight de-
lays.

Delay Propagation: The primary objective in delay prop-
agation is to understand how delay propagates along se-
quences of flights and through airports, based on the as-
sumption that an initial delay has already occurred in the
transportation system due to a previous flight. We consider
a particular scenario in which delays are spread to other
flights of the same aircraft as chain reactions, as has been
previously studied (Abdelghany et al. 2004) (Wong and Tsai
2012). Although it is important to understand the stabil-
ity and the reliability of the recovery of the carriers from
the delay propagation as studied in (Wu 2005) and (Diick et
al. 2012), we focus on the dynamics of delay propagation
through sequence-to-sequence learning.

Transfer learning with heterogeneous feature spaces:
Multi-view representation learning approaches aim at learn-
ing from heterogeneous “views” (feature sets) of multi-
modal parallel datasets. Previous work in this field in-
clude canonical correlation Analysis (CCA) based methods
(Dhillon, Foster, and Ungar 2011), via auto-encoder regu-
larization in deep networks (Wang et al. 2015), translated
learning (Dai et al. 2009), Hybrid Heterogeneous Transfer
Learning (HHTL) (Zhou et al. 2014), etc., all of which re-
quire source-target correspondent parallel instances mean-
ing the feature spaces are the same.

Previously, (Seungwhan Moon 2017) and (Moon and Car-
bonell 2016) study a transfer learning framework where
source and target datasets are heterogeneous in both feature
and label spaces. As they do not assume explicit relations
between source and target tasks apriori, their method pro-
vides a way to control what to and what not to transfer from
source knowledge. This method, termed “Attentional Het-
erogeneous Transfer”, is very similar to the method we use
in this paper.

Flight Delay Prediction

This section presents the problem formation for flight de-
lay prediction, sequence representation for fitting an LSTM
model, and the adaption and extension for transfer learning
to address the problem of small data in low-cost airlines.

Problem Formulation

Motivation: In initial settings and reviewed state-of-the-art
approaches, a delay of a flight is considered as a unique and
independent event. However it can be affected by many fac-
tors, and in particular temporal elements such as the late ar-
rival of a previous flight, and in turn affects the on-time de-
parture of succeeding flights. Such behavior, called the rip-
ple or propagation effect in airline industry, is a strong mo-
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tivation to model the aircraft delay problem as a sequential
prediction problem. Thus, given a sequence of past flights
for a particular aircraft, we predict the departure delay for
subsequent flights in the sequence.

Recurrent neural networks (RNN) are well designed for
predicting sequences over time, and are a natural fit for this
problem. In particular the LSTM variant of RNNs, which
have have gained traction in recent years, nicely fit the char-
acteristics of the problem.

Problem Statement: We consider the prediction task P =
{X,Y}, with the target task features X = {z(¥}N, for
z € RM | where (i) N is the sample size, (ii)) M is the
feature dimension, and (iii) Y = {y("}~, is the ground-
truth predictions where y € R. We also assume a succes-
sive prediction scheme, meaning that the prediction func-
tion fO(z(®),y=1 4(=2) ...} is function of current z(*)
as well as all the previous predicted values y), j <
1. We might also construct series of predictors to pre-
dicts for the future values of y/), j > i, denoted by
fg*i(;p(i), y=D 4=2) ),

Modeling: We could model this problem as a one shot pre-
diction problem, feeding back the predicted delay to the
model to observe the propagation of the delay. However,
the benefit in using the LSTM cell is the propagation of the
state of the cell which enables the model to propagate an
insight into the reason behind the delay.

Flight Delay Sequencing

As flight information is stored in a transactional database,
we initially required a sequencing algorithm in order to de-
termine what sequences to train the LSTM model with.

In order to achieve this we use aircraft tail number and
scheduled departure date and time to form a unique identifier
for sequencing. However various sequencing approaches
could be applied, strongly impacting results. We report the
two best sequencing methods (based on empirical experi-
mentation) applied below.

24-hour Sequencing: In this method we define a sequence
as a 24 hour time period using a midnight cut-off point.
Scheduled departure time is used as the sequence point:
flights are considered part of that days sequence only if their
departure time is before midnight. We make an implicit
assumption that delays between consecutive days are inde-
pendent of each other, and that normal flight operation hap-
pens during daytime. This assumption appears to hold if
the duration of most of the journeys are relatively short and
geographically clustered, which is generally true for both
our datasets which are based on European low-cost airlines.
However in a minority of cases there are relatively large gaps
between flights in a single sequence.

Historical Pattern Sequencing: We generated sequences
based on the historical pattern of turnaround time for each
aircraft. With this method we assume that the journey and
turn-around pattern of each aircraft does not vary signifi-
cantly, i.e. an aircraft that makes several short flights per
day does not then switch and make one long-haul flight per
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Figure 1: Comparison of sequencing methods for two airplanes for a 3 month period starting from 1st June 2016. Sequences
breaks are display in blue and should delineate a natural break in flight sequences. Both methods produce largely similar
sequences, however the 24-hour method (labeled [24-hr]) will occasionally include long gaps between flights in the following
sequence if it crosses the midnight threshold, whereas the historical pattern sequencing (labeled with § determined on a per

airplane basis) generally performs better.

day. This assumption also appears to hold when using our
European low cost airline datasets.

We compare the two sequencing methods in Figure 1,
showing the time between scheduled departures for two air-
craft over a 3 month period. The pattern of flights for each
aircraft is periodical, with several flights with short turn-
around time followed by a longer gap (generally at night-
time). It is our assumption that long gaps between departure
times would absorb any propagated flight delay, and are the
most natural sequence breaks.

LSTM Modeling

We considered an LSTM model to capture and predict se-
quences of flight delays.

Background: LSTM cells were originally proposed in 1997
(Hochreiter and Schmidhuber 1997), and with several sub-
sequent modifications (Gers, Schmidhuber, and Cummins
2000) greatly improved upon the ability of vanilla RNNs to
‘remember’ long-term dependencies. LSTMs are building
units for layers of a recurrent neural network, and are built
from an input, output, and forget gate. Each of the three
gates can be thought of as a conventional artificial neuron,
that is, they compute an activation of a weighted sum. In-
tuitively, they can be thought as regulators of the flow of
information that goes through the connections of the LSTM.
Due to their structure and performance, LSTM cells have
been used extensively for time series prediction, and in our
case applied to address the problem of sequence-to-sequence
learning for flight delays.

Customization: Figure 2 demonstrates a brief schematic
overview of the architecture of a recurrent neural network
model. At each stage of the prediction, the model produces
an output vector which is then mapped to the estimated pre-
diction using a perceptron layer and also passes that pre-
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dicted values for the next stage of the prediction to itself.
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Figure 2: The LSTM Model

Transfer Learning

Motivation: Due to the difference in the number and fre-
quency of flights, variation in reported statistics, and overall
size of each airline, there is a discrepancy in the size of the
data available to train the model. This is a strong motiva-
tion to apply transfer learning, aiming at improving model
performance for much smaller airlines. In addition, all air-
lines do not fly to and from the same set of airports. Instead
departure and arrival airports might be very different, as re-
ported by our analysis i.e., 48% of airport coverage. This
brought an additional motivation to formulate the problem
using a framework for learning a target regression task given
a source dataset with heterogeneous feature as follows.

Framework: We first define a dataset for the target task 7' =
{Xr,Yr}, with the target task features Xp = {ng)}f\fl

for zp € RM7 | where Nr is the target sample size and
My is the target feature dimension, the ground-truth la-
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Figure 3: Training procedure for the basic and transfer learn-
ing models

bels Y7 = {V?}N1 | where y; € R. For a new air-
line target task, we assume that we are given very few la-
beled instances. Similarly, we define a heterogeneous air-
line source dataset S = {Xg,Ys}, with Xg = {x(sf)}fvjl
for x5 € RMs for Yg = {Ys(l)}ﬁvjl.

Objective: The goal is to build a regression model f :
X1 — Yr that is robust for the flight delay prediction task,
trained with x7(7), yr (i) as well as knowledge transferred
from zg (i), ys (i) .

Approach: Our approach aims to leverage a source data
that lies in a separate feature space to the target problem.
Transferring knowledge directly from heterogeneous spaces
is intractable, and thus using the same approach as (Seung-
whan Moon 2017), we begin by obtaining a unified vector
representation of source and target categories. This process
is aimed at gaining a compact representation of the source
and target features that encode abstract information of the
initial target and source features, which allows for more
tractable transfer through affine projections. Once the label
terms for the source and the target datasets are anchored in
the embedding space, we learn projections into a new com-
mon latent feature space of the source and the target spaces
(Ws and Wr), respectively, from which f,, maps the joint
features into the label space.

We define Wg and W to denote the sets of learnable pa-
rameters that project source and target features into a latent
joint space, where the mappings can be learned with deep
neural networks.

Attention Mechanism: Our approach also used an atten-
tion mechanism, clustering the source dataset into C' differ-
ent clusters, (Xg¢',Y§"), to combat the effect of the nega-
tive transfer by optimizing over the importance of different
clusters in the overall loss function using a learnable param-
eter a;. To learn these parameters simultaneously, we solve
the following joint optimization problem with hinge rank
losses for both source and target over the parameter space
(fpv WS» WT? a):

Lo =3 g L0 (T W)

JeT
(&7} c; ci 1
203 et AKX Ws) D
i€C jesSci

+ Asl[Wsll + AslWrl| + Apl[ fl],
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where,
__exp(a)
O =S . v
> exp(ai)
and L(.,.) is a loss function defined based on the task, |.| and
|.|| denote the size of the dataset and an appropriate norm

for the transformation respectively, and Ag, As and A, are
regularization parameters.

Experiments

Set-up: Experiments are run on two datasets: airline S (for
small) and airline B (for big), which contain 24,000 and
340,000 flights respectively. Both airlines are based in Eu-
rope, however airline B operates in 181 airports with 140 air-
crafts while airline S operates in 89 airports with 44 aircrafts.
Data available from S (i.e., the target domain) is nearly 15
times smaller than B, and contains only a 45% feature over-
lap. Both B and S share information related to flight date,
scheduled and actual departure and arrival times, origin and
destination airports (although only overlap in 46% of air-
ports served by both airlines), and differ in features such
as number of adult and infant passengers, total number and
weight of booked bags, number of wheelchair users.

From sequencing methods in Section we can extrapolate
some additional features such as turn-around time, arrival
delay of previous flight, time to next scheduled departure,
and sequencing.

Models: Models are trained for 700 epochs, in mini-batches
of size 128, using a learning rate of 0.001 and the Adam op-
timizer. Sequences are created with variable lengths of 6-8
flights. We cluster the data for the airline B into two groups,
the first one includes all the data points that share a departure
airport common with airline S and the second one includes
all the other data points. Categorical variables are encoded
using one-hot encoding. The date range of the datasets did
not allow us to perform a temporal train-test split (i.e. train
on one year, test on the next) within the transfer learning
paradigm, therefore 5-fold cross validation is used to gener-
ate the following results. We minimize effects of temporal
proximity by generating training sequences such that data
points do not occur in more than one sequence, and do not
overlap temporally. We construct three models to evaluate
performance:

e Linear Regression [LR]: We train a one shot linear model

at each hop using data from Airline S.

Basic Model [BM]: We train the basic model with the re-
current neural network described in Section 3.

Transfer Learning Model [TL] : We train the transfer
learning model using the data from Airline B.

With regard to both neural network models, the embed-
ding layer is constructed from 512 cells with a rectified lin-
ear (ReLU) activation function, the dynamic recurrent neu-
ral network is constructed with an LSTM cell of size 64 and
forget bias 1, and the output layer is constructed from 128
cell with ReLU activation mapped to single prediction using
a linear transformation. All weights are initialized using the
xavier initialization scheme, the bias vectors are initialized



to a constant 0.1, and the initial state of the LSTM cell is
initialized as zero.

Transfer Learning Training Phase:

We train the weight parameters (Wg, Wr) in (1) to pro-
duce a higher similarity between the projected source or tar-
get instance and the embedding representation of its true
delay, than between the projected instance and other incor-
rect term embeddings. The intuition of the model is that the
learned W7y is a shared and more generalized LSTM trans-
formation model capable of mapping the joint intermediate
subspace into a prediction for delay.

RMSE Results on Prediction with No Prior Knowledge:

In Table 1, we report the Root Mean Squared Error
(RMSE) for the case in which we predict the departure delay
at the start of the day for the following six flights assuming
no prior information regarding the departure delay is known.
The features used in this case are the expected number of
passengers, scheduled flight times and the departure and ar-
rival airports and at each step of the prediction, the predicted
delay for the previous flight is passed to make a prediction
for the next hop during the day.

hops
1 2 3 4 5 6
LR | 105 | 17.7 | 21.5 | 29.3 | 323 | 33.1
Air. S | BM | 10.2 | 16.7 | 204 | 28.6 | 31.0 | 31.5
TL | 9.61 | 16.1 | 20.1 | 28.6 | 29.0 | 32.1
Air. B | BM | 19.8 | 21.8 | 23.1 | 29.6 | 33.5 | 443

Table 1: Results of RMSE for two airlines with regard to
the Linear Regression(LR), Basic Model (BM) and Transfer
Learning(TL) for 6 hops.

MAE Results on Prediction with No Prior Knowledge:

As we expect that very large departure delays are caused
by factors not discernable from our feature set, we also re-
port the mean absolute error (MAE), which is less sensitive
and more robust with regard to large deviations than RMSE
in Table 2. However, as these cases are rare, this does not
affect the training process due to the batch size of 128 and
small learning rate.

1-6 2-5 3-4
BM TL BM TL BM TL

1] 605 | 584
211001 | 9.54 | 9.67 | 9.14

S {31138 ] 1117 | 11.7 | 10.35 | 9.41 8.92
41 16.00 | 16.74 | 17.44 | 15.89 | 14.09 | 12.77
5 116.66 | 17.01 | 16.94 | 14.54 | 15.03 | 14.80
6 | 18.01 | 1934 | 19.7 | 17.61 | 16.79 | 16.73

Table 2: Results of MAE for Airline S for Basic Model (BM)
and Transfer Learning Models(TL) for 6 hops. Prediction
starting at different points in the day.

MAE Results on Prediction with Prior Knowledge: In
Tables 3 and 4, we report the RSME for the case that first

9545

and second flights had already departed. In this case we had
access to the actual departure delays that we can feed into
the prediction model to predict the departure delay for the
rest of the flights of the day. Observe that as we gain more
context and insight into delay profile of an aircraft during
the day, the prediction becomes more accurate. In Tables 2,
we report the MAE for departure delay.

hops
2 3 4 5 6
LR | 17.2 | 1875 | 40.3 | 28.9 | 30.07
AirlineS | BM | 16.0 | 21.4 | 429 | 29.6 | 344
TL | 142 | 17.3 | 37.6 | 26.6 | 30.3
Airline B | BM | 17.1 | 22.1 | 28.7 | 32.5 | 43.2

Table 3: Results of RMSE for two airlines with regard to
the Linear Regression(LR), Basic Model (BM) and Transfer
Learning(TL) for 5 hops

hops
3 4 5 6
LR | 18.35 | 31.23 | 3347 | 31.32
AirlineS | BM | 17.5 | 28.6 | 332 | 285
TL | 154 | 283 | 325 | 283
AirlineB | BM | 189 | 25.7 | 304 | 42.0

Table 4: Results of RMSE for two airlines with regard to
the Linear Regression(LR), Basic Model (BM) and Transfer
Learning(TL) for 4 hops

Lessons Learned:

(i) On Sequencing: The first observation made was that
the sequencing algorithm matters; we aim to find the best
sequence cut points, such that the departure delay statisti-
cal properties of consecutive flights are independent of each
other. In this regard 24 hour sequencing performed very
well. However sequencing approaches would differ between
airlines, depending on fleet size (network vs. low cost air-
lines), routes, and operated airports (EU vs. N. America).

(i) On Transfer Learning: Despite different sets of fea-
tures available with regard to two airlines, the transfer learn-
ing approach improves the performance of the model, which
shows that the transfer learning model can capture the ef-
fect of the airports and time and date of the flight better the
basic LSTM model due to the larger amount of data in the
jointly-mapped space.

(iii) On Feature Set: Given that the feature sets used in our
experiments were limited in size, we found out that increas-
ing the size of the LSTM layer beyond 128 units does not
impact the performance of the system.

(iv) On our Flight Delay Application: Recurrent neural
networks using LSTM cells are powerful models capable
capturing long-term dependencies in time-series data. How-
ever, the quantity and breadth of data is still the primary bot-
tleneck when training these models. Propagated delay due



to late aircraft is just one of several factors influencing flight
delay, the others being roughly categorized as: operational,
weather, security, carrier delay. It would be unreasonable
to expect high performance over multiple hops when the
current scope of our data holds such a limited perspective
on the causes of flight delay. An expanded dataset that in-
cluded weather conditions, airline features, airport features
e.g., current occupancy, business, expected traffic, as well
as contextual features such as events, national holidays, etc,
would undoubtedly be able to capture in greater fidelity the
delay factors and thus provide greater accuracy of predic-
tions over flight sequences. However, the noisy ’real-world’
problems that contribute directly to flight delay are still un-
likely to be predicted.

(v) On Temporal Modeling for Flight Delay Application:
How and what we consider a sequence of flights clearly has
an impact on prediction accuracy. Given that an aircraft
making a lot of short flights will affect significantly more
passengers (and therefore airlines) over the course of a sin-
gle day than a single long-haul flight, and with due consider-
ation to the horizon effect introduced by longer sequences of
flights, it is perhaps worth investigating the use of a tempo-
ral window around the prediction time, rather than division
of flights into sequences of varying length and duration.

Conclusion and Future Work

We studied the problem of flight delay prediction in the con-
text of a small amount of available data. Towards this chal-
lenge we presented a Long Short-Term Memory approach
to predicting flight delays, modeling sequences of flights
across multiple airports for a particular aircraft throughout
the day. We then presented a Transfer Learning approach
with heterogeneous feature space to train a system for a
given smaller airline using the data from another larger air-
line. Our approach has demonstrated (i) to be robust and ac-
curate for low cost airlines in Europe, and (ii) to effectively
leverage knowledge from a much larger airline carrier (with
different set of features) to predict flight delays in minutes.

This proved to be beneficial, and opens up future appli-
cations for smaller airlines to bootstrap the model training
procedure using transfer learning, then subsequently fine-
tune using their own data. Integration of this application
into either airport or airline operations would have the ben-
efit of enabling a prioritization of specific flights in order to
minimize overall delay (at a later time) due to the ripple ef-
fect. However, as airport performance indicators don’t take
into account delays at other airports, there may be different
incentives for airlines and airports.

In future work we will investigate (i) sequencing mech-
anisms on different airlines, in particular network airlines,
(i) feature space extension with integration of external data
e.g., airport data, (iii) application in larger larger datasets.
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