
 

 

Relating the Structure of a Problem and Its Explanation 

Eugene C. Freuder 

Insight Centre for Data Analytics, School of Computer Science & Information Technology, University College Cork, Cork, Ireland  
eugene.freuder@insight-centre.org 

 

 

 

Abstract 

As AI becomes more ubiquitous there is increasing interest 
in computers being able to provide explanations for their 
conclusions. This paper proposes exploring the relationship 
between the structure of a problem and its explanation. The 
nature of this challenge is introduced through a series of 
simple constraint satisfaction problems.    

 Introduction   

As AI becomes more ubiquitous there is increasing interest 

in computers being able to provide explanations for their 

conclusions (Aha et al. 2018; Magazenni et al. 2018), and 

the European GPDR provides special impetus (Goodman 

and Flaxmanar 2016). Many years ago I began exploring 

the relationship between the structure of a problem and the 

complexity of its solution (Freuder 1982). This paper pro-

poses exploring the relationship between the structure of a 

problem and its explanation. The nature of this challenge is 

introduced through a series of simple constraint satisfac-

tion problems.  

A constraint satisfaction problem (CSP) involves choos-

ing a value for each problem variable, subject to re-

strictions (constraints) on allowable combinations of val-

ues. CSPs have many uses in AI and in real-world applica-

tions. In fact, in an earlier AAAI Senior Track paper I ar-

gued that constraints can serve as a unifying force in AI 

(Freuder 2006).  

In constraint satisfaction, on the one hand we are fortu-

nate in that an explanation for a successful solution is very 

straightforward: “see, the constraints are satisfied”. 

(Though one may want a further explanation as to how the 

solution was obtained, or a characterization of a set of so-

lutions). However, when a constraint satisfaction problem 

is unsolvable, explanations are difficult, as there can be an 

exponential number of reasons for failure, corresponding to 

every way that the constraints cannot be satisfied, and there 

can be many different routes to arriving at the conclusion 

that satisfaction is impossible. To misquote Tolstoy: Solv-

                                                 
Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

able CSPs are all alike; every unsolvable CSP 

is unsolvable in its own way.  

Thus the primary focus here is on explaining failure. A 

number of approaches have been taken to providing expla-

nations for constraint satisfaction failure. We restrict our-

selves here to efforts to provide explanations to users as 

opposed to explanations intended to make algorithms more 

efficient or to aid programmers (Freuder 2017). Given the 

exponential threat, and to address specific needs, these 

efforts generally start with an abstracted or higher-level 

form of explanation, e.g. sets of unsatisfiable constraints, 

and then quickly limit their focus, e.g. to minimal sets of 

unsatisfiable constraints.  

The position taken here is to start with truly complete 

explanations (Freuder 2018) and abstract and limit from 

there. The approach taken here is straightforward, and at 

least at this point, not very deep or technical; but one that, 

perhaps for that reason, may be well-suited to the goal of 

providing a high-level “big picture” of the structure of the 

problem, in a form readily meaningful to a human user. 

The hope is that this approach may, as well, lead to general 

insights into the structure of constraint satisfaction prob-

lems.   

Complete 

A CSP can be represented by a constraint network, with a 

node for each variable, each with a set of possible values, 

and edges (or more generally hyperedges) representing 

constraints. We will use the problem represented by the 

following constraint network as an initial example. It rep-

resents a simple, unsolvable “coloring problem”. The prob-

lem is to choose a color (r)ed or (b)lue for each node (X, 

Y, Z) such that any two nodes connected by a constraint 

(A, B, or C) have different colors. Each constraint is a “not 

equals” constraint.  

 

9765

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)



 

Figure 1: Example Problem 

Of course, this is an unsolvable problem. Just as the obvi-

ous way to “completely explain” a solution is simply to 

point at the constraints and say “see they are all satisfied”, 

the obvious way to provide a complete explanation for 

failure is to list all the possible instantiations, assignments 

of values to variables, and point out for each the con-

straints that are not satisfied.  

There are 8 possible assignments of values red or blue to 

the variables X, Y, and Z in our example, none of which 

satisfy all the constraints. Each of these is listed in the table 

below, along with the set of constraints that the assignment 

does not satisfy. E.g. (r b r) {B} indicates that assigning 

red to X, blue to Y and red to Z violates just constraint B.  

   
(r r r) {A B C} (r r b) {A} 

(r b r) {B} (r b b) {C} 

(b r r) {C} (b r b) {B} 

(b b r) {A} (b b b) {A B C} 

Figure 2: A Complete Explanation 

Scalability 

The reader may be immediately concerned that listing all 

the possible assignments to obtain a complete explanation 

will not be an approach that scales well. Research in con-

straint programming on explanation has understandably 

grappled with scaling issues. Abstractions and limitations 

derived from complete explanations, and associated visual-

ization tools, may address scaling concerns. Clever algo-

rithms or sampling methods may reduce effort. We can 

seek to take advantage of symmetry and specialized struc-

ture. Most importantly, relationships we observe, prove, or 

mine with machine learning methods, between problem 

structure and explanation structure may permit us to make 

at least approximate predictions or generalizations without 

large scale computational effort.   

If a large effort is still required, an initial off-line effort 

may be amortized by its use for repeated, efficient on-line 

queries. However, our presumption is also that, as AI be-

comes increasingly pervasive in everyday life, attention 

will shift to some degree to smaller scale problems where 

the issue is not so much how to minimize explanation size, 

as how to maximize explanation utility, and the need may 

be less for scalable algorithms and more for effective hu-

man-computer interfaces.  

Abstraction 

Complete explanations may be useful in themselves, e.g. 

for machine learning purposes, but human users will gen-

erally appreciate higher level views of the problem “land-

scape”. We can look for, and automate extraction of, pat-

terns, abstractions, properties of the complete solution set. 

We focus here on the sets of constraints that are violated 

by each instantiation.  The constraint violations in our ex-

ample’s complete explanation can be summarized by the 

set: 

 

{{A} {A} {B} {B} {C} {C} {A B C} {A B C}} 

 

where each of the elements corresponds to the set of con-

straints violated by an assignment.  

We have “abstracted out” some information here. This 

says that there are two assignments that just violate con-

straint A, but it does not specify which they are (though 

this information might be “attached” to be pulled up when 

asked for). 

 

This can be rewritten as: 

 

2{A} U 2{B} U 2{C} U 2{A B C} 

 

and then as: 

2([C]
1 
U {C}) 

 

where [S]
k
 is the set of all cardinality k subsets of S, C is 

the set of all constraints, and nS denotes a set containing n 

copies of every member of S.  

While removing all constraints is, of course, sufficient to 

allow any solution, we are indicating here that it is only 

necessary for two of the solutions.  

We could limit such a representation further, e.g. by re-

ducing just to a term that represents removing the fewest 

constraints or one that represents the most partial solutions. 

Such limitations could simplify the generation or handling 

of the explanation.  

There is, of course, a long history of work on “partial 

constraint satisfaction” (Freuder and Wallace 1992), but 

this generally focuses on finding an instantiation that satis-

fies a maximal number of constraints. In some applica-

tions, users might want a broader picture of their options. 

We might want to define and study concepts like k-

unsatisfiability, for instantiations where k constraints are 

unsatisfied or k-unsolvability, for problems that can be 

solved by removing k constraints.   

The sets {A}, {B}, {C} and {A B C} correspond to 

what have been called exclusion sets (O’Sullivan et al. 

2004). We define an exclusion set here as a subset of the 

9766



problem constraints that when removed permits at least one 

solution. It is important to note that the sets employed here 

do not correspond to the common use of sets in explana-

tions to represent, in effect, unsatisfiable subproblems, 

often “minimal” unsatisfiable subproblems, where remov-

ing any constraint makes the subproblem satisfiable. The 

representation here is both finer-grained, and arguably 

more comprehensive. 

The symmetry of the problem is reflected in the explana-

tion and helps make it more compact, but we could also try 

to make use of symmetry up front to simplify the deriva-

tion of the formula.  

The formula compactly describes the “landscape” of the 

problem, and corresponds to a simple, high-level, natural 

language “story”:  

 

We can get a solution by removing just one 

constraint, and in fact any constraint will do, 

and will admit two more solutions. Remov-

ing two constraints at a time will not buy us 

any more solutions. There are two solutions 

that cannot be obtained without removing all 

constraints. 

 

The formula should be straightforward to generate auto-

matically (though there may be room for cleverness in 

making the process more efficient) and provides a compact 

representation for the computer and for expert human us-

ers. The English explanation should be easy to produce 

automatically from the formula by a rudimentary English-

language generator. I claim that it constitutes a satisfying 

high-level explanation for a human user, and one that pro-

vides some insights that are not immediately obvious from 

the statement of even a simple problem like this.  

We can, of course, look for other forms of abstraction, 

we can investigate other ways of characterizing or classify-

ing complete explanations, other features or patterns, per-

haps even an explanation taxonomy.  

Questions 

The formula could also be used to automatically generate 

answers to common questions that users might have. For 

example:  

 

Q: How many more solutions do I gain if I allow two con-

straints at a time to be violated rather than just one. 

A: None actually. There are only two solutions that require 

removing more than one constraint, and those require re-

moving all of them.  

 

We can also use this approach to answer “what if” or 

“how” questions. For example, “How much do I have to 

give up to obtain a solution with r(ed) for X?” or “Can I 

get a solution with r(ed) for X by removing just one con-

straint?” If we limit the values for X to r(ed), the explana-

tion formula for the resulting problem is: 

 

[C]
1
 U {C} 

 

which readily provides the answer. Of course, ideally we 

could “annotate” the explanation for the original problem 

to permit us to derive this explanation without starting 

from scratch.  

Solvable 

We can also look at the unsolvable portion of a problem 

that does have solutions. Suppose that constraint C, be-

tween Y and Z, is an equality constraint rather than an ine-

quality constraint. This changes the results to:  

   
(r r r) {A B} (r r b) {A C} 

(r b r) {B C} (r b b) solution 

(b r r) solution (b r b) {B C} 

(b b r) {A C} (b b b) {A B} 

Figure 3: Complete Explanation for Modified Problem 

The complete explanation for the unsatisfiable portion of 

this problem is: 

 

2[C]
2
 

 

If we like, we can add the solvable assignments back in, 

represented by the empty set of unsatisfied constraints, to 

obtain the formula: 

 

2([C]
2
 U {Ø}) 

 

Or in English: 

 

This problem has two solutions. Elimi-

nating one constraint will not add any 

new solutions. Eliminating each combi-

nation of two constraints at a time yields 

two additional solutions. There is no as-

signment that fails to satisfy all three 

constraints at once.  

Comparisons 

These explanations also can be used as a tool to compare 

problems or view the effects of modifying a problem. For 

example, here we see that changing the one constraint from 

inequality to equality changed the explanation to its “com-

plement”: the second explanation involves exactly those 

subsets of constraints that are not in the first. You may find 

this to be a bit of a surprise. Why is this so, under what 

general conditions will this happen? More generally, how 

9767



will changes in the problem change the explanation? Stud-

ying the structure and relationships of complete explana-

tions may yield new insights into CSPs.  

This complementarity is strongly reflected visually in 

the following image, which distinguishes which of the sub-

sets of {A B C} in the the traditional “power set lattice” 

appear in the explanation of the original or modified prob-

lem.  

 

 

Figure 4: Complementarity 

Structure 

For our final example we consider the Queens problem. 

The classic Queens problem is to place 8 chess queens on a 

chessboard such that no two attack each other. We will 

look at the 3 Queens problem, placing 3 chess queens on a 

3 by 3 mini chessboard, such that no two attack each other. 

This is unsolvable. It is a larger problem than our coloring 

problem, there are 27 possible instantiations. The abstract-

ed explanation is: 

 

2[C]
1
 U 2[C]

2
 U 6{C12 C23} U 9C  

 

In English: 

 

Removing any one of the constraints en-

ables two solutions. Removing any two 

of the constraints at a time enables two 

other solutions, but removing C12 and C23 

will enable 6 more. To obtain the re-

maining 9 solutions you need to remove 

all the constraints. 

 

Partly thanks to symmetry, the formula is still fairly com-

pact even though we have more than triple the number of 

possible instantiations that we had for the coloring prob-

lem. And again the English explanation tells us an interest-

ing story about the “structure” of the unsatisfiability, one 

which is not immediately obvious from the statement of 

the problem. In this case, for example, in another form of 

“complementarity”, unlike for the coloring problem, only a 

relatively small proportion of the assignments become so-

lutions when a single constraint is removed, and a relative-

ly large proportion of assignments only become solutions 

when all the constraints are removed.  

Again, this suggests a potential line of inquiry: can we 

predict based on problem structure what proportion of the 

assignments will be only “one constraint away” from satis-

fiability? More generally, can we relate the structure of a 

problem to the structure of its explanation? 

The question of “distance from satisfiability” leads, for 

example, to the following conjecture:  

 

The Good News / Bad News Conjecture: 

 

The harder a constraint satisfaction problem 

is to solve, 

the easier it is to come close to a solution, 

and vice versa. 

 

By “coming close” is meant finding an instantiation that 

violates few constraints. If one is familiar with the basic 

approaches to solving CSPs, backtracking and local search, 

this conjecture will seem a natural one. The existence of 

many “almost solutions” can lead to costly, frustrating for-

ays deep into the search tree or up to local maxima. We 

could investigate conjectures like this experimentally. 

What kind of theoretical machinery might enable us to 

prove conjectures like this formally? 

Conclusion 

We have identified: 

• An Opportunity: Studying the structure and relationships 
of explanations may yield new insights into problems. 

• A Challenge: Can we relate the structure of a problem 
and the structure of its explanation? 

These have been raised here, and might be further pursued, 

in the context of basic constraint satisfaction problems, but 

might also be generalized or specialized. For example, still 

in the context of constraint satisfaction, we could expand to 

consider constraint optimization problems, or specialize to 

scheduling problems. There are many variants and exten-

sions of CSPs that might merit bespoke approaches to ex-

planation. More generally, we can look for corresponding 

opportunities and challenges in explaining other forms of 

AI.   

Acknowledgments 

This material is based upon works supported by the Sci-

ence Foundation Ireland under Grant No. 12/RC/2289, 

which is co-funded under the European Regional Devel-

opment Fund.  

9768



References 

Aha, D.; Darrell, T.; Doherty, P.; and Magazzeni, D. eds. 2018. 
Proceedings  of  the  2nd Workshop  on Explainable  Artificial  
Intelligence. https://tinyurl.com/yxh7vpsl.  

Freuder, E. 1982. A Sufficient Condition for Backtrack-Free 
Search. J. ACM 29(1): 24-32.  

Freuder, E. 2006. Constraints: The Ties That Bind. In Proceed-
ings of the Twenty-First National Conference on Artificial Intelli-
gence, 1520-1523. Menlo Park, Calif.: AAAI Press. 

Freuder, E. 2017. Explaining Ourselves: Human-Aware Con-
straint Reasoning. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, 4858-4862. Palo Alto, Calif.: 
AAAI Press. 

Freuder, E. 2018. Complete Explanations. At the web page of the 
Second Workshop on Progress Towards the Holy Grail. 
https://tinyurl.com/yxcwjonj.  

Freuder, E., and Wallace, R. 1992. Partial Constraint Satisfaction. 
Artificial Intelligence 58(1-3): 21-70.  

Goodman, B., and Flaxmanar, S. 2016. European Union regula-
tions on algorithmic decision-making and a “right to explana-
tion”. Xiv:1606.08813v3 [stat.ML].  

Magazzeni, D.; Smith, D.; Langley, P.; and Biundo, S. eds. 2018. 
Proceedings of the 1st Workshop on Explainable Planning. 
https://tinyurl.com/y2ybbhtq.  

O'Sullivan, B.; Papadopoulos, A.; Faltings, B.; and Pu, P. 2007. 
Representative Explanations for Over-Constrained Problems. In 
Proceedings of the Twenty-Second AAAI Conference on Artificial 
Intelligence, 323-328. Menlo Park, Calif.: AAAI Press.   

 

 

 

9769




