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Abstract

In this paper, we define a new problem of multi-layer network
community detection, namely higher-order multi-layer com-
munity detection. A multi-layer motif (M-Motif) approach
is proposed, which discovers communities with good intra-
layer higher-order community quality while preserving inter-
layer higher-order community consistency. Experimental re-
sults have confirmed the superiority of the proposed method.

Introduction
Many efforts have been made in developing effective
approaches for community detection in multi-layer net-
work (Mucha et al. 2010; Zhang et al. 2018). However, they
are conducted relying on lower-order microscopic proximity
structure (e.g. first- and second-order proximities of nodes)
that can be captured at the level of individual nodes and
edges. Very recently, higher-order structure at the level of
small network subgraphs has been introduced for discov-
ering communities that preserve higher-order connectivity
patterns. Since higher-order structure lies between lower-
order microscopic proximity structure and mesoscopic com-
munity structure, it plays the role of building blocks for
complex network (Benson, Gleich, and Leskovec 2016)
and therefore helps discover communities that best avoid
damaging building blocks. In this paper, we define a new
problem, namely higher-order multi-layer community detec-
tion, and propose a novel approach called multi-layer motif
(M-Motif), which for the first time discovers communities
in multi-layer network from the perspective of preserving
higher-order structure.

Background and Problem Statement
The input is a multi-layer network G = {G1, . . . ,Gv} con-
sisting of v layers with each layer Gp = {V, Ep},∀p =
1, 2, . . . , v having the same set of n nodes V but slightly
different linkage structure Ep. The community structure in
different layers may differ slightly due to different linkage
structures across different layers. The goal is to discover
the community structures C = {C1, . . . , Cv} with Cp =
{Cp1 , . . . , Cpc } for the p-th layer, where Cpj ,∀j = 1, . . . , c
is the set of nodes that are assigned to the j-th community
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in the p-th layer and c is the number of communities. The
community structure Cp should well preserve the topologi-
cal structure in the p-th layer while the degree of consistency
between community structures Cp and Cq should reflect the
consistency level between the two layers.

One representative higher-order structure is motif, which
is defined as follows (Benson, Gleich, and Leskovec 2016).
Definition 1 (Motif) Motif is a dense subgraph occurring
in complex networks at numbers that are significantly larger
than those in randomized networks. The motif is denoted as
M = {VM, EM} where VM and EM denote the node set con-
sisting of m nodes and edge set consisting of e edges in the
motif M respectively, with e being between m − 1 (a line
motif) and m(m−1)

2 (a clique motif).
Despite the bursty studies of motifs in community de-

tection in single-layer network, the higher-order structure
of multi-layer community detection remains largely un-
known (Huang, Wang, and Chao 2018). This paper aims to
study the following new problem.
Definition 2 Higher-order multi-layer community detection
aims to discover a set of v community structures, each for
one individual layer, satisfying the following two require-
ments.
• Requirement I [Intra-layer Higher-order Community

Quality]: For each layer p, the number of motif instances
within each community Cpl should be as large as possi-
ble compared with the expected number of motifs within
community Cpl .

• Requirement II [Inter-layer Higher-order Community
Consistency]: For each node i, if the motif structures con-
taining node i are consistent across two views p and q, the
community label should also be consistent.

Requirement I ensures that the motif structure can be best
preserved in the discovered communities. On the other hand,
Requirement II ensures the consistency degree of commu-
nity structures matches the consistency degree of higher-
order structures across layers.

The Proposed Multi-layer Motif Approach
For each layer, the statistically significant motifs will be
identified first by means of the Abundance measure as de-
scribed in (Milo et al. 2004), which are denoted as the motif
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Figure 1: Comparison results on the four datasets.

set {M}. Each motif M is taken as the building blocks of the
multi-layer network and will be leveraged as higher-order
structure for community detection.
Definition 3 The motif-based inter-layer consistency of
node i across layers p and q is defined as

Cp,q
i = JaccardSim

(
IpM(i), I

q
M(i)

)
=
|IpM(i) ∩ I

q
M(i)|

|IpM(i) ∪ I
q
M(i)|

where IpM(i) denotes the instance set of motif M in layer p
containing node i. To avoid trivial calculation,Cp,p

i = 0,∀i.
For each layer Gp, the adjacency matrix representing the

edge structure Ep is denoted as Ap ∈ Rn×n. Let kpi =∑n
j=1A

p
i,j denote the degree of node i in layer p and kp =

1
2

∑n
i=1 k

p
i denote the total degree of all nodes in layer p. By

further denoting the community label of node i in layer p as
gpi , the objective function of the proposed model is

Q({gpi }) =
1

2µ

∑

p,q

∑

i1,...,im[( ∏

(a,b)∈EM
Ap

ia,ib
− γp

∏

(a,b)∈EM

kpiak
q
ib

2kp
)
δ(p, q)χ(i1 < · · · < im)

+ Cp,q
i1
δ(i1, ..., im)

]
δ(gpi1 , ..., g

p
im
, gqi1 , ..., g

q
im
) (1)

subject to: each layer is partitioned into c communities.

In the above objective function, γp ∈ (0, 1] is the resolution
parameter for the p-th layer; (a, b) ∈ EM denotes the edge
(a, b) of the motif M with a, b being the nodes of the motif;
χ(i1 < · · · < im) equals 1 if i1 < i2 < · · · < im is true and
0 otherwise, which avoids both the overlapping nodes (in-
valid) and the redundant calculation of motif instance; and
δ(∗, . . . , ∗) is the Kronecker function which equals 1 when
all the variables ∗ are equal to each other and 0 otherwise.

It can be proved that the proposed objective function
Eq. (1) satisfies both Requirement I and Requirement II
stated in Definition 2. An optimization framework can be
developed that provably finds near-optimal communities by
the “generalized Louvain” approach (Jeub et al. 2011 2017).

Experiments
For experimental purpose, the four WebKB datasets are
used, namely Cornell, Texas, Washington and Wisconsin,
which contain 195, 187, 230 and 265 web pages respec-
tively. The web pages are interconnected via the hyperlinks,

based on which an undirected network layer can be con-
structed for each dataset (link layer). Each web page is de-
scribed by a 0/1-valued word vector representing the ab-
sence/presence of each word from the dictionary of size
1703. For each dataset, if the cosine similarity of the repre-
sentation vectors of two web pages is no smaller than 0.5, the
two web pages are interconnected, based on which an undi-
rected network layer can be constructed (attribute layer). In
this way, a 2-layer network is constructed for each dataset.

Two existing multi-layer network community detection
methods are used as baseline methods, namely multi-layer
modularity (M-Modularity) (Mucha et al. 2010) and multi-
layer edge mixture model (MEMM) (Zhang et al. 2018).
For M-Motif, the 3-node clique motif is used. For all the
methods, the parameters are set as default values or tuned
as suggested by the authors. Since all the three methods
generate the community structure for each layer, Figure 1
plots the results in terms of normalized mutual information
(NMI) obtained by the three methods in each of the two lay-
ers. From the figure, we can see that M-Motif significantly
outperforms the two baselines in generating larger values of
NMI in both layers on the four testing datasets.

Conclusions
In this paper, we have presented a novel multi-layer motif
approach for solving the newly defined higher-order multi-
layer community detection problem. Experimental results
have confirmed the effectiveness of the proposed method.

Acknowledgements
This work was supported by NSFC (61502543, 61876193)
and National Key Research and Development Program of
China (No. 2018YFC0809700).

References
Benson, A. R.; Gleich, D. F.; and Leskovec, J. 2016.
Higher-order organization of complex networks. Science
353(6295):163–166.
Huang, L.; Wang, C.-D.; and Chao, H.-Y. 2018. A harmonic
motif modularity approach for multi-layer network commu-
nity detection. In ICDM.
Jeub, L. G. S.; Bazzi, M.; Jutla, I. S.; and Mucha,
P. J. (2011-2017). A generalized Louvain method
for community detection implemented in MATLAB.
http://netwiki.amath.unc.edu/GenLouvain.
Milo, R.; Itzkovitz, S.; Kashtan, N.; Levitt, R.; Shen-Orr,
S.; Ayzenshtat, I.; Sheffer, M.; and Alon, U. 2004. Su-
perfamilies of evolved and designed networks. Science
303(5663):1538–1542.
Mucha, P. J.; Richardson, T.; Macon, K.; Porter, M. A.;
and Onnela, J. 2010. Community Structure in Time-
Dependent, Multiscale, and Multiplex Networks. Science
328(5980):876–878.
Zhang, H.; Wang, C.-D.; Lai, J.-H.; and Philip, S. Y. 2018.
Community detection using multilayer edge mixture model.
Knowledge and Information Systems 1–23.

Figure 1: Comparison results on the four datasets.

set {M}. Each motif M is taken as the building blocks of the
multi-layer network and will be leveraged as higher-order
structure for community detection.

Definition 3 The motif-based inter-layer consistency of
node i across layers p and q is defined as

Cp,q
i = JaccardSim

(
IpM(i), I

q
M(i)

)
=
|IpM(i) ∩ I

q
M(i)|

|IpM(i) ∪ I
q
M(i)|

where IpM(i) denotes the instance set of motif M in layer p
containing node i. To avoid trivial calculation,Cp,p

i = 0,∀i.
For each layer Gp, the adjacency matrix representing the

edge structure Ep is denoted as Ap ∈ Rn×n. Let kpi =∑n
j=1A

p
i,j denote the degree of node i in layer p and kp =

1
2

∑n
i=1 k

p
i denote the total degree of all nodes in layer p. By

further denoting the community label of node i in layer p as
gpi , the objective function of the proposed model is

Q({gpi }) =
1

2µ

∑
p,q

∑
i1,...,im[( ∏

(a,b)∈EM

Ap
ia,ib

− γp
∏

(a,b)∈EM

kpiak
q
ib

2kp

)
δ(p, q)χ(i1 < · · · < im)

+ Cp,q
i1
δ(i1, ..., im)

]
δ(gpi1 , ..., g

p
im
, gqi1 , ..., g

q
im

) (1)

subject to: each layer is partitioned into c communities.

In the above objective function, γp ∈ (0, 1] is the resolution
parameter for the p-th layer; (a, b) ∈ EM denotes the edge
(a, b) of the motif M with a, b being the nodes of the motif;
χ(i1 < · · · < im) equals 1 if i1 < i2 < · · · < im is true and
0 otherwise, which avoids both the overlapping nodes (in-
valid) and the redundant calculation of motif instance; and
δ(∗, . . . , ∗) is the Kronecker function which equals 1 when
all the variables ∗ are equal to each other and 0 otherwise.

It can be proved that the proposed objective function
Eq. (1) satisfies both Requirement I and Requirement II
stated in Definition 2. An optimization framework can be
developed that provably finds near-optimal communities by
the “generalized Louvain” approach (Jeub et al. 2011 2017).

Experiments
For experimental purpose, the four WebKB datasets are
used, namely Cornell, Texas, Washington and Wisconsin,
which contain 195, 187, 230 and 265 web pages respec-
tively. The web pages are interconnected via the hyperlinks,

based on which an undirected network layer can be con-
structed for each dataset (link layer). Each web page is de-
scribed by a 0/1-valued word vector representing the ab-
sence/presence of each word from the dictionary of size
1703. For each dataset, if the cosine similarity of the repre-
sentation vectors of two web pages is no smaller than 0.5, the
two web pages are interconnected, based on which an undi-
rected network layer can be constructed (attribute layer). In
this way, a 2-layer network is constructed for each dataset.

Two existing multi-layer network community detection
methods are used as baseline methods, namely multi-layer
modularity (M-Modularity) (Mucha et al. 2010) and multi-
layer edge mixture model (MEMM) (Zhang et al. 2018).
For M-Motif, the 3-node clique motif is used. For all the
methods, the parameters are set as default values or tuned
as suggested by the authors. Since all the three methods
generate the community structure for each layer, Figure 1
plots the results in terms of normalized mutual information
(NMI) obtained by the three methods in each of the two lay-
ers. From the figure, we can see that M-Motif significantly
outperforms the two baselines in generating larger values of
NMI in both layers on the four testing datasets.

Conclusions
In this paper, we have presented a novel multi-layer motif
approach for solving the newly defined higher-order multi-
layer community detection problem. Experimental results
have confirmed the effectiveness of the proposed method.

Acknowledgements
This work was supported by NSFC (61502543, 61876193)
and National Key Research and Development Program of
China (No. 2018YFC0809700).

References
Benson, A. R.; Gleich, D. F.; and Leskovec, J. 2016.
Higher-order organization of complex networks. Science
353(6295):163–166.
Huang, L.; Wang, C.-D.; and Chao, H.-Y. 2018. A harmonic
motif modularity approach for multi-layer network commu-
nity detection. In ICDM.
Jeub, L. G. S.; Bazzi, M.; Jutla, I. S.; and Mucha,
P. J. (2011-2017). A generalized Louvain method
for community detection implemented in MATLAB.
http://netwiki.amath.unc.edu/GenLouvain.
Milo, R.; Itzkovitz, S.; Kashtan, N.; Levitt, R.; Shen-Orr,
S.; Ayzenshtat, I.; Sheffer, M.; and Alon, U. 2004. Su-
perfamilies of evolved and designed networks. Science
303(5663):1538–1542.
Mucha, P. J.; Richardson, T.; Macon, K.; Porter, M. A.;
and Onnela, J. 2010. Community Structure in Time-
Dependent, Multiscale, and Multiplex Networks. Science
328(5980):876–878.
Zhang, H.; Wang, C.-D.; Lai, J.-H.; and Philip, S. Y. 2018.
Community detection using multilayer edge mixture model.
Knowledge and Information Systems 1–23.

9946


