74 Al MAGAZINE

Articles

The Design and Evaluation
of User Interfaces for the

RADAR Learning
Personal Assistant

Andrew Faulring, Ken Mohnkern, Aaron Steinfeld,

B The RADAR project developed a large multi-
agent system with a mixed-initiative user inter-
face designed to help office workers cope with e-
mail overload. Most RADAR agents observe
experts performing tasks and then assist other
users who are performing similar tasks. The
interaction design for RADAR focused on devel-
oping user interfaces that allowed the intelligent
functionality to improve the user’s workflow
without frustrating the user when the system’s
suggestions were either unhelpful or simply
incorrect. For example, with regard to autono-
my, the RADAR agents were allowed much flex-
ibility in selecting ways to assist the user but
were restricted from taking actions that would
be visible to other people. This policy ensured
that the user remained in control and mitigated
the negative effects of mistakes. A large evalua-
tion of RADAR demonstrated that novice users
confronted with an e-mail overload test per-
formed significantly better, achieving a 37 per-
cent better overall score when assisted by
RADAR. The evaluation showed that Al tech-
nologies can help users accomplish their goals.

and Brad A. Myers

E—mail plays a central role in many people’s work. Unfortu-
nately e-mail client software is poorly suited to support the “col-
laborative quality of e-mail task and project management,”
which results in people suffering from “e-mail overload” (Bel-
lotti et al. 2005). The e-mail overload occurs in part because e-
mail client software does not support efficient strategies for
tracking and processing all the tasks contained within a person’s
e-mails. For example, switching from one task type to another
can incur a significant overhead. Many coping strategies, such
as asking that people use a specific subject line for each task
type, do not scale well and simply shift the burden to others.

It is difficult to create an efficient order when sorting one’s
inbox using e-mail-centric properties, such as sender, subject, or
date. In general, the resulting order will not group similar tasks
together nor will it account for intertask dependencies. Several
research projects have experimented with adding task-manage-
ment features to e-mail clients (Bellotti et al. 2005; Gwizdka
2002; Whittaker, Bellotti, and Gwizdka 2006), and some e-mail
clients do provide features that try to facilitate task manage-
ment such as tagging and separate to-do lists. The primary draw-
back of this approach is that users resist doing the required addi-
tional work to use them (Whittaker and Sidner 1996), and it
forces them to read each e-mail at least twice: once to create the
task, then again when actually doing the task.!

We developed a mixed-initiative e-mail system, modeled after
a personalized assistant, which uses Al learning techniques to
reduce e-mail overload. RADAR (reflective agents with distrib-
uted adaptive reasoning) was a five-year interdisciplinary proj-

Copyright © 2009, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

ect involving more than 100 people, which built a
suite of intelligent agents to help office workers
complete routine tasks more efficiently. RADAR’s
Al technologies supported a more efficient task-
centric workflow as compared with the traditional
e-mail-centric workflow.

This article discusses usability issues encoun-
tered while designing and evaluating RADAR. It
focuses on providing concrete examples of many
of the ideas discussed in the theme articles in this
special issue, rather than providing a complete
description of RADAR. Freed provides a more
detailed description of the RADAR approach, archi-
tecture, and agents (Freed et al. 2008). Steinfeld
describes the extensive evaluation used to measure
how well RADAR succeeded in reducing e-mail
overload (Steinfeld et al. 2007).

A key design decision for RADAR was that its
agents would generally not be allowed to take
autonomous action when such actions would be
visible to other people or systems. Instead, RADAR
assisted a user by completing parts of a task and
then would ask the user for approval when the
next step would be externally visible. This
approach gave RADAR considerable flexibility to
work on the user’s behalf without risking costly
mistakes. In a real-world situation, such mistakes
could embarrass the user or leak private informa-
tion, which are concerns that might negatively
affect adoption and trust. The user remains in con-
trol, has an understanding of what the system will
do, and maintains the desired amount of privacy,
all challenges that are discussed in the usability
side-effects theme article (Jameson 2009) in this
issue.

The RADAR architecture consists of three groups
of agents, which together help the user to handle
their incoming e-mails (see figure 1). First, the mes-
sage-task linking (METAL) agents identify the tasks
contained within each e-mail (b). The action list,
the primary user interface for METAL, provides a
task-centric view of the user’s inbox (see figure 2).
Second, the multitask coordination assistant
(MCA) agents suggest an order for handling the
tasks (c). The progress bar displays a suggested
schedule along with a visualization of the user’s
completed work (see figure 3). Third, the Power-
Tools agents provide assistance with performing
each task (d). Each PowerTools agent supports a
particular kind of task. PowerTools agents include
the briefing assistant (Kumar, Das, and Rudnicky
2007), schedule optimizer (Fink et al. 2006), and
webmaster (Zimmerman et al. 2007). This article
focuses on usability issues for the METAL and MCA
agents; the PowerTools agents were designed using
the same process.

E-mail

(@

Y

METAL
(b) MEssage -TAsk
Linking

Y

MCA
Multitask
© Coordination

Assistant

(d) PowerTools

Figure 1. The RADAR Architecture.

The architecture consists of three groups of agents (b, ¢, and d), which togeth-

er help users to handle their incoming e-mails (a).

Evaluation Challenges

A key challenge was designing an effective evalua-
tion that measured how well the system reduced e-
mail overload. We wanted to conduct carefully
controlled, repeatable user studies to measure how
well RADAR helped people. Since the project was
planned to run for five years, repeatability was an
important requirement that would allow us to
measure progress over time. We initially consid-
ered designing an evaluation that used people’s
actual e-mail, but eventually decided against such
a design. Such an evaluation would make compar-
isons difficult because of the vast differences
among people’s workloads. Additionally, any study
would have to carefully protect the privacy of both

WINTER 2009 75

Articles

(@)

(a.i)
(a.ii)
(a.iil)

(a.iv)

(b)

©

(d)

(e)

®

(C))

Incomplete Actions (11)

1 im <lim12@ardra.org>

2 note schedule chagnes Spence Pierro <spierro@ardra.crg> RADAR
3 Sternwheeler Capacity Meredith Lorenz <lorenze@pittsburgh.flagstaff.com> RADAR,
4 Capacity Meredith Lorenz i flagstaff.com: USER
5 no email Today, 3:45 PM RADAR
& Webpage Austin Parton <aparton@ardra.org> Today, 3:37 PM RADAR
7 s figures and new # Amy Lim <limi2@ardra.org> Today, 3:32 PM RADAR
8 Organization Wrong Sonal Malhotra org Today, 4:32 PM RADAR
5 change phone numbers Emily Halwizer <halwizer@ardra.org> Today, 4:47 PM RADAR
10 | Place a Vendor Order Tech. Request - flip charts Maggie i i dra.org> Teday, 3:33 PM RADAR
1 Send a Briefing Brief me, please Jonathon org: Today, 4:42 PM RADAR

Vegetarian options?

Sandra Nubanks <snubank

Amy Lim <liml2@ardra.org>

Michelle Randal <mich-randal@gmail.com>

L. dra.org> Today, 3:24 PM_Add an Action

Blake, I didnt know who to contact about making sure to have a laptop

ilable, and d to teh AV

- ie projector. 1 want all that ready on the ...

-

car arrangements | Angie Randal <angiednacer6@gmail.com> Today, 3:23 PM Add an Action
Ms K is counting on me to help out with the kids' dance class. The car is still in the shp. Can you drop me off over there? thanks :-)

oOther Emails (1)

Deleted Emails (1)
|Read Subject
Precipitation Update | Westher Alerts <westher@westher.gov>
There iz a 70% probability for thunderstorms with heavy rain in ALLEGHENY COUNTY this evening through tomorrow. Flan accordingly and be safe! Go to www.weather.gov ...

~ Sender

Today, 3:56 PM | Add an Action "

Figure 2. The RADAR Action List.

The action list provides a task-centric view of an e-mail inbox. The “Incomplete Actions” (a), “Overflow Actions” (b), and “Completed
Actions” (c) tables list the tasks contained within e-mail messages, allowing the user to sort by task-centric properties. The three e-mail tables
contain e-mails for which no tasks have been created (e, £, and g).

Duration: 1m 18s

Pricrky: &

Figure 3. The RADAR Progress Bar.

The progress bar shows completed (a) and deleted (b) tasks to the left of the current time (c), and the suggested schedule to the right. Non-
critical tasks are blue (a, b, and g), critical tasks are orange (f), and expected tasks are gray (d and h). Details about the highlighted task (e)
are shown in the status bar at the bottom. The progress bar appears in its own window, which is always visible.

the participants and those with whom they com-
municated by e-mail.

We still wanted to create the most realistic, gen-
eralized evaluation possible. Project members, in
conjunction with external evaluators, spent sig-
nificant effort developing a rich systemwide user
test to evaluate how well RADAR assists a user (Ste-
infeld et al. 2007).? The evaluation presented users

76 Al MAGAZINE

with a simulated conference-planning scenario in
which each user is confronted with a challenging
e-mail overload workload. First, we required that
dependencies exist between some tasks, and doing
those tasks out of order should result in wasted
work or incorrect results. Second, e-mail-centric
properties such as subject lines should not be very
helpful for grouping similar tasks or discerning effi-

cient task orders. Third, the test should be hard
and users should not be expected to finish within
the allotted time, so as to eliminate ceiling effects
from performance results.

In the test, users assumed the role of a confer-
ence planner, filling in for the regular planner,
Blake, who is indisposed. The simulated four-day,
multitrack conference had keynotes, plenary talks,
banquets, paper sessions, workshops, and so forth.
Participants needed to handle the outstanding
conference planning tasks that had arrived in e-
mail, including many requests from the confer-
ence attendees. Blake’s inbox contained these e-
mails, which can be categorized as follows.
Scheduling e-mails told the organizer about updat-
ed event constraints or room properties, which
determine how well each room satisfies an event’s
requirements. Website e-mails contained requests
from attendees to correct their contact informa-
tion on the conference website. Informational e-
mails contained questions about the conference,
especially the schedule, from attendees. Vendor e-
mails specified attendee meal preferences and A/V
requirements. The briefing e-mail from the confer-
ence chair requested a summary of the user’s
progress, which was due at the end of the test. Par-
ticipants also had to deal with a conference crisis,
which involved the loss of use of a significant
number of rooms in which conference events had
already been scheduled.

Over three years, we ran four major studies using
this test to evaluate RADAR’s ability to assist a user.
Each study used a unique set of e-mails that fol-
lowed the pattern described above but varied so
that the agent developers would not have seen the
exact e-mails prior to each test. Each e-mail set
contained about 120 e-mails. Approximately one
third of those messages were unrelated to the con-
ference, serving as “noise” messages.

Each test session lasted up to 4.25 hours and
included up to 15 users, who worked independ-
ently on the same e-mail set. With such long test
sessions, the ability to test multiple users concur-
rently allowed us to run many tests on different
versions of the system. In the first phase of each
test session, users learned about the conference-
planning scenario and participated in hands-on
training with the software. The hands-on training
ensured that all users would be familiar with the
software that they would use. During training,
RADAR did not provide expert advice; instead users
were given examples of the types of advice that
they would receive. Following a break, users start-
ed the two-hour testing session, which included
another break after one hour.

Over the course of three years, approximately
400 people participated in the four major evalua-
tions; 300 more people participated in additional
interim evaluations. The test scenario created a

realistic environment in which to evaluate how a
personalized assistant can help overcome e-mail
overload. The results of the repeated evaluation of
RADAR with novice users gave confidence that its
technologies help reduce e-mail overload.

Design and Evaluation Methods
for Improving Usability

Common user interface design techniques
worked well when designing RADAR'’s user inter-
faces. For example, early in the project some
RADAR researchers performed a type of field study
called a “contextual inquiry” (Beyer and
Holtzblatt 1998). The researchers observed office
workers who regularly receive e-mail requests that
are performed by filling out forms. The observed
work was very helpful in informing the design of
the RADAR system because it helped us under-
stand actual user needs.? These workers would
regularly save a small set of related tasks and then
perform them together as a group. They claimed
that this saved them time by reducing the num-
ber of times that they needed to connect to dif-
ferent IT systems. Each connection entailed over-
head costs of navigating to different interfaces
and logging in to the individual systems. These
observations inspired us to focus on creating a
task-centric workflow for processing e-mail
requests, which fit these users’ desired work prac-
tices better than the traditional e-mail-centric
workflow. In conjunction with the underlying Al
technologies, which we will discuss later, we were
able to create a system that matched users’ desired
work practices (see the usability benefits theme
article [Lieberman 2009] in this issue).

We employed an iterative design process, anoth-
er commonly user interface design technique (also
discussed in the usability engineering methods
theme article [Spaulding and Weber 2009] in this
issue). Early in the process we built paper proto-
types of the screen layouts, which we showed to
potential users. We could construct paper proto-
types, allowing us to iterate over many design ideas
and thereby rapidly improve the user interface.
One important discovery from the usability testing
was that the term action works better than task, so
we used the former term in the user interface.
However, we will continue to use task throughout
this article except when referring to specific user
interface elements.

We held weekly development meetings attended
by both agent developers and user interface design-
ers. These meetings increased team integration and
facilitated an ongoing discussion about possible
ways in which Al technologies might be employed
to assist users through usable interfaces.

Prior to major tests, we ran multiple practice
tests over the course of several months. These prac-

Articles

WINTER 2009 77

Articles

tice tests, which employed both RADAR developers
and novice users as testers, revealed many prob-
lems. For some of the tests, we used RADAR devel-
opers, who were effectively novice users with
respect to the other system components. These
people saw firsthand how developers can have dif-
ficulty seeing usability problems with their own
component, and hence understood the usefulness
of having “fresh eyes” test a system. It made them
more aware of the challenges of designing user
interfaces for other people and more open to sug-
gested improvements to their components based
upon usability testing.* Usability testing allowed
us to find and fix problems, which significantly
increased the usability of the overall system.

A Task-Centric Interface
for E-Mail Processing

The e-mail classifier, a METAL agent, examines the
content of each e-mail for evidence that it contains
any of the eight task types that it was trained to
recognize (Yang et al. 2005). The e-mail classifier
uses a regularized logistic regression algorithm that
scales to thousands of labels (Yang, Zhang, and
Kisiel 2003). When it finds sufficient evidence for
a given task type, it labels the e-mail with the task
type. The classifier evaluates the evidence that sup-
ports each task type independently, and so it can
apply zero, one, or more different task labels to
each e-mail. However, it cannot determine
whether an e-mail contains multiple tasks of the
same type. To improve classification performance,
Scone (Fahlman 2006), which is RADAR’s knowl-
edge base, provides additional ontological infor-
mation that is not contained within an e-mail’s
content. Examples of this information include
basic facts, “the Connan room is in the University
Center,” and higher-level concepts, “a peanut is a
kind of food that people might be allergic to.”®
The novice users in the RADAR evaluation
might have had difficulty effectively judging
whether the e-mail classifier’s labels were correct,
because these users were not experts with respect
to the different tasks. We were concerned that too
many false positives might have confused them,
causing them to waste time.® So we tuned the clas-
sifier to favor precision over recall. An examination
of the classifier’s behavior showed that it did per-
form as desired. The most recent evaluation used
an e-mail set with 123 e-mails, which contained
102 task labels.” The classifier correctly found 47
task labels and incorrectly suggested 6 other task
labels (false positives): precision = 0.887 (47/53)
and recall = 0.461 (47/102). In a longer running
test or a real work environment in which the users
are less likely to be misled by errors, it may be
desirable to adjust the precision/recall balance. In
such cases, increasing the recall, which may lower

78 Al MAGAZINE

the precision, may lead to better user performance,
since experts may be able to quickly discard false
positives. Even so, too many false positives may
undermine a user’s confidence in the system.

For each task label applied to an e-mail, RADAR
creates a task object, which is managed by the task
manager database (Garlan and Schmerl 2007).
Information stored includes whether there is a web
form for handling that kind of task. Early in the
system design, contextual inquiries had revealed
that many tasks required filling out web-based
forms. RADAR’s natural language processor
(Nyberg et al. 2008) attempts to specify task-spe-
cific parameters in the form, including the data-
base record that the form should modify. If RADAR
can identify the record, then it will also try to fill
in the fields of the form.

The resulting tasks are displayed in the action
list, which provides a task-centric view of the
user’s e-mail inbox (see figure 2). The action list
design provides a mixed-initiative interaction
style for creating and completing tasks contained
within e-mails. The action list allows a user to
inspect the tasks that RADAR created, add ones
that were missed, delete ones that should not have
been created, and launch web pages to perform
some of the tasks. This novel integration of a to-do
list with the forms for completing the tasks
removes unnecessary steps from the process of
performing a task.

The action list contains seven tables divided into
two groups: the first for tasks, and the second for e-
mails (see figure 2). The task group contains four
tables that list “incomplete” (a), “overflow” (b),
“completed” (c), and “deleted” (d) tasks. Tasks that
the user has yet to perform are split between the
incomplete and overflow tables, with the latter
table containing the tasks that the multitask coor-
dination assistant recommends that the user
should skip due to time constraints. An e-mail
message can be associated with multiple tasks of
the same type (see a.ii and a.iii in figure 2), multi-
ple tasks of different types (a.i and a.iv), or both.
Note that in these examples, the same e-mail
appears multiple times in the action list. Tasks
completed by the user appear in the completed
table, which provides users with a record of their
progress and allows them to go back and revisit
previous tasks, for example to do another task in
the same way. The deleted table is intended to con-
tain tasks that RADAR created erroneously and the
user subsequently deleted.

The tabular task display allows users to sort their
tasks with respect to task-centric properties such as
“description” or “order” (by clicking the appropri-
ate column title), in addition to standard e-mail-
centric properties such as sender, subject, and date.
When an e-mail contains multiple tasks of differ-
ent types, each of those types will be grouped with

the other tasks of the same type when the user
sorts the table by the “description” column. The
other columns in each table use a standard sort
order based upon their data type.

The second set of tables (e, f, and g) display e-
mails that are not associated with any nondeleted
tasks. These tables provide similar features to a tra-
ditional e-mail inbox, such as columns for the sub-
ject, sender, and date. The entry for each e-mail
also includes an excerpt from the beginning of the
e-mail body to aid the user in determining whether
an e-mail contains a task without requiring the
user to open the e-mail. Clicking either the subject
text or the “Add an Action” link navigates to a
page that displays the standard header and body
sections along with the list of tasks that the user
can add to the e-mail.

The e-mails are divided among the three tables.
The “possibly conference-related e-mails” table
contains e-mails that RADAR thinks may contain
tasks but could not confidently identify the exact
task type (e). This partial classification focuses the
user’s attention on e-mails likely to contain tasks
without risking errors that might result if RADAR
incorrectly classified the task as being of a partic-
ular type. The second table contains other e-mails
that RADAR did not identify as task-related (f).
The third table contains e-mails that the user
deleted (g).8

The Multitask Coordination
Assistant: Providing Task
Ordering Advice

METAL'’s ability to automatically locate tasks with-
in e-mails helps the user at the individual task or e-
mail level. However, the user still has to select an
order in which to work on the tasks. A novice user
will likely lack metaknowledge about tasks that
would be helpful in picking an efficient order. Use-
ful metaknowledge includes relative task impor-
tance, expected task duration, task ordering
dependencies, and which new tasks may become
necessary after completing a task. An expert user
with that knowledge should be able to select an
efficient order and would know which tasks to skip
when there is not enough time to complete all the
tasks.

RADAR’s multitask coordination assistant
(MCA) learns task metaknowledge by passively
observing expert users. The MCA provides novice
users with guidance, including a continuously
updated schedule. The MCA is designed to support
near-term deadlines on the order of 1-8 hours,
which would be encountered during a typical
user’s workday, and it can handle situations in
which the amount of work exceeds the time allot-
ted.

The primary advice provided by the MCA is the

suggested schedule, which specifies an order in
which to perform tasks. For example, the MCA rec-
ommends updating the event constraints and
room properties before running the schedule opti-
mizer. The optimizer can incur both monetary and
time costs, so running it multiple times is best
avoided, which is strategy knowledge that a novice
user is not likely to possess. The MCA learns what
tasks may become necessary after a task is com-
pleted, and so it also adds such “expected” tasks to
the schedule. For example, the user will need to
reschedule existing vendor orders after the sched-
ule optimizer creates a new schedule; this process
might require 20-30 minutes of work, which is a
significant portion of the two hour test. Showing
the expected tasks in the schedule provides the
user with a more realistic understanding of upcom-
ing work and eliminates major changes to the
schedule that would otherwise occur when an
expected task actually becomes necessary. Addi-
tionally, the MCA identifies “critical” tasks, which
are particularly important tasks that the user
should definitely complete.

The MCA adapts to the user’s actual behavior
rather than force the user to follow the schedule
rigidly. The suggested schedule specifies a total
ordering of the tasks even though some tasks are
not strictly ordered with respect to each other.
While we considered visualizing the schedule as a
partially ordered treelike diagram, we ultimately
decided that the additional information would be
more confusing than helpful. When users choose
to deviate from the schedule, the MCA ignores
deviations that are inconsequential. However, the
MCA displays popup warning dialogues when the
user significantly deviates from the suggested
schedule. In particular, the warnings are issued if
the user works on a critical task much earlier than
experts did, if the users had not yet started working
on a critical task by the time that most experts had,
or if the user starts working on a critical task that
is not the next critical task on the suggested sched-
ule.? Additionally, the MCA adapts the schedule to
the user’s observed performance. For example, the
MCA observes the user’s pace relative to experts
and then scales the planned task durations accord-
ingly. When the MCA calculates that there is not
enough time remaining to perform all incomplete
tasks, it recommends specific tasks to skip
(Varakantham and Smith 2008). These behaviors
are examples of how technology can adapt to the
user, not the other way around (see the usability
benefits theme article [Lieberman 2009] in this
issue). The user is ultimately in control; the system
never prevents them from doing anything.

The primary user interfaces for displaying the
suggested schedule are the “order” column in the
action list (see figure 2) and the progress bar (see
figure 3). The progress bar appears at the bottom of

Articles

WINTER 2009 79

Articles

the screen and always remains visible without
obscuring other windows. Time is represented on
the horizontal axis, which in this case spans two
hours. An inverted black triangle and vertical red
line represent the current time (c), which increas-
es from left to right. Each box represents a task.
Task boxes to the left of the current time represent
completed (a) or deleted (b) tasks, providing a
record of the user’s progress so far. The width of
each of these task boxes represents the time that
the user spent working on the task.

The suggested schedule is visualized by the tasks
to the right of the current time. The width of each
of these task boxes represents the amount of time
that the MCA expects the tasks to require. Blue task
boxes represent noncritical tasks (g). Orange task
boxes represent critical tasks and are designed to
have higher visual salience (f). Gray boxes repre-
sent “expected” tasks (d); expected tasks that are
critical appear as taller gray boxes (h).

The user can quickly inspect any task by moving
the mouse over its task box (e), which updates the
status bar at the bottom to show the highlighted
task’s description, status, actual/planned start time,
actual/planned duration, and priority. The high-
lighted task, along with all other tasks of the same
type, is drawn with a thicker border to allow the
user to see where that type of task is distributed
throughout the schedule. Double-clicking a box
opens up the corresponding task. The number of
overflow tasks, which are the ones the MCA pro-
poses to skip due to time constraints, appears at
the bottom right.

The MCA'’s advice also appears in other parts of
the RADAR user interface. First, the action list’s
“order” column shows the position of each future
task within the suggested schedule (see figure 2).
Only tasks in the “incomplete actions” table are
included in the suggested schedule. Sorting the
“incomplete actions” table by the “order” column
shows the schedule as an ordered to-do list. Sec-
ond, the specific tasks that the MCA suggests that
the user skip are shown in the “overflow actions”
table; the progress bar only shows the number of
such tasks. Third, after the user completes or
deletes a task, RADAR provides a link to the next
suggested task, which allows the user to move to it
without having to return to the action list.

The MCA learns models of expert behavior by
passively observing experts performing tasks using
the same user interfaces that test participants will
later use. To train the system, experts did the two-
hour study using a version of the system for which
the MCA learning components were watching
rather than recommending. Other Al components
operated normally. For example, the e-mail classi-
fier had already analyzed the e-mails and identified
tasks. The training used three different sets of e-
mails (none of which was the test e-mail set),

80 AI MAGAZINE

which provided variability to prevent overtraining.
In a real deployment, the MCA would use online
learning, so it would continuously adapt to the
user’s choices.

Agent-Assisted Form Filling

Many of the conference evaluation tasks are com-
pleted by entering information from an e-mail into
a form. As our contextual inquires showed, form
filling is a common activity since people often
receive structured information as unstructured,
plain text. Examples of structured information
include calendar appointments, contacts, address-
es, purchase orders, bibliographies, and so forth.
The receiver needs to enter the information into a
forms-based user interface, a process that can be
tedious and error prone.

A number of natural language processing sys-
tems have demonstrated the feasibility of parsing
natural language into structured formats (Culotta
et al. 2007; Stylos, Myers, and Faulring 2004; Zim-
merman et al. 2007). Such systems offer the poten-
tial to significantly reduce the tedious task of enter-
ing the information in each field. However, such
systems can make errors, so the form-filling user
interface needs to help the user to identify and cor-
rect the errors. We designed novel visualizations
and interaction techniques that help the user to do
that efficiently.

The user can access a task’s form several ways:
clicking the action’s description link in the action
list (for example, “Modify Room: Flagstaff: Stern-
wheeler” in figure 2.a.ii), clicking the next suggest-
ed action link after completing another action, or
double-clicking a task box in the progress bar. As
seen in figure 4, the e-mail appears on the left, and
the task’s form on the right. Meredith, who sent
this e-mail, works at the Flagstaff hotel, which is
one of the places where a RADAR test user, acting
as the conference planner, can schedule confer-
ence events. Meredith'’s e-mail describes some inac-
curacies and out-of-date information for a particu-
lar room on the hotel’s website. The user’s task is to
enter the updated information into the RADAR
schedule optimizer’s room property form for the
Sternwheeler room. Updating the room’s proper-
ties provides the schedule optimizer with the most
accurate information about the state of the simu-
lated conference world so that it can produce the
best conference schedule.

Figure 4 shows the forms-based interface after
RADAR has already selected the correct task, Modi-
fy Room, and record, Sternwheeler. This form-fill-
ing interface includes visualizations and interac-
tion techniques that allow the user to see the
changes that RADAR has proposed!® and to correct
any errors. RADAR has proposed new values for
fields that already had values (e, {, and j), assigned

Articles

T

All emails: = Previous email 49 of 119 Next email =
. . Incomplete actions: < Previoys action 3 of 11 Next ation =

Greetings Mr.Randal, Instructions
. s 5 " This email message appears to contain a request to modify a room.
1 just wanted to inform you of an easily forgotten room here in the e ify

hatel, called the Sternwheeler room. I'm mentioning it because I think You can edit a room’s properties using this form. Press the "Submit™ button to save your changes and to mark this action as

that the info on our website is wrong. The room has a micro| completad.
(doesn't have (, though). (Changes Revert 0Old values
a
Also it can hold 20-40 in a u-shaped setup and 30 in a2
configuration, making it a great space for one of your presentations. Computers | | < |
€) Microphones |: | 0
©Oh, someone just bocked the room on Wed afternoon. Might not be () _ E
up on the webste yet () projectors q & o
The hourly rate for Sternwheeler and Vandergrift increased 10% Rental cost
starting the first of this month. (g) rerhour [330.00 | (=) 0000
1 hope this new information is useful in planning the Ardra Shating cApaciiag - y
Conference! | -
Classroom |60 <] &0
Meredi
ermcith Lonirs (h] Conference |3I! <] 30
Reception] 1 <
Deiete Email (i) ushope [B =
Existing actions for this email: Availability
) Mon Tue Wed Thu Mon Tue Wed Thu
» Modify Room: Flagstaff: Stermwheeler ¥4 unavailable 70 1 ﬁ 700 b,
> Modify Room: Flagstaff; Vandergrift | Available 8% 8
Click 1l 54 ~
on a cell to 1000 1000
toggle its availability. |, 1160
Click and drag to
C change several cells 129 1200
simultaneously. 100

Also it can hold
configuration, making i

in a [ESHEESEMEEEIR and 30 in a conference
great space for one of your presentations.

Ain1m
@&

Figure 4. Forms-Based Interface.

The e-mail on the left contains information about a room. The form on the right is used to edit that room’s properties. After analyzing
the e-mail, RADAR proposes values for several fields (e, f, h, i, and j). The text segment within the e-mail used by RADAR to derive the pro-
posed field’s values is called an anchor and is drawn with an orange background (a and b). Moving the mouse or cursor over a proposed
field value (f) highlights the associated anchor (a). Additionally, moving the mouse over an anchor (c) will open the menu of proposed

field values (d)

a value to a field that was previously empty (i), and
decided that an existing value was correct (h). We
also designed and implemented two user interface
features that the current RADAR agents do not fill
in. First, the user interface allows an agent to pro-
pose multiple possible values for a field, rather than
discard all but its top choice. All of the proposed
values appear in a menu, which allows the user to
select the correct value when it is not the top choice
(d and i). Second, a special availability grid allows
the user to specify availability constraints, such as
when an event could be scheduled (j). While
RADAR agents do not propose changes to the avail-
ability constraints, the schedule optimizer does use
the availability constraints entered by the user
when generating the conference schedule.

The user interface helps the user to identify the
changes that RADAR has proposed and to fix any

incorrect ones.!! The original value for each field
appears in the “old values” column on the right.
When a field’s current value (left column in the
form) differs from its old value, the border of the
field changes to a thick black border and the
“revert” button becomes enabled (k). In the exam-
ple, RADAR has incorrectly proposed a value of “1”
for the projectors field (f). The user can undo this
erroneous change by pressing the revert button (k),
which restores the field to its old value. The field-
modified visualizations are independent of
whether or not RADAR proposed a value for the
field. For example, the conference seating capacity
field has a proposed value that equals the old val-
ue, so the field-modified visualization is not
enabled (h). For another example, consider when
the user edits the per hour rental-cost field, which
RADAR had not proposed changing (g). After the

WINTER 2009 81

Articles

Condition N Score Mean (Std. Dev.)
Without Learning 23 0.550 (0.072)
Without MCA 28 0.706 (0.063)
With MCA 28 0.754 (0.035)

Table 1. Evaluation Scores (Mean and Standard Deviation) for the August 2008 Test.

“N” denotes the number of participants in each condition.

user changes the field’s value, the
field-modified visualizations are
enabled.

The user interface allows RADAR to
specify the text regions from which it
derived a proposed field value. Such a
text segment is called an anchor since
the proposed field value in the form
links back to the source text. The
anchor text within the source e-mail
and the proposed field values (e, f, h, i,
and j) are both drawn with an orange
background. A proposed field value
can link to multiple noncontinuous
segments of text. For example, the “U-
Shape” seating capacity field’s pro-
posed value of “20” links to both the
“20” and “u-shaped setup” text seg-
ment in the source text. By highlight-
ing the text segments within the e-
mail, the user can tell whether or not
RADAR has identified a given text seg-
ment as relevant to any field. If
RADAR misses some relevant text, the
lack of an anchor should alert the user
to the omission. When the user moves
the mouse cursor over an anchor, the
anchor (a) and associated field (f) are
drawn with a darker orange back-
ground to visually associate the pro-
posed field value with its anchor text.
The same visual change appears when
the user moves the mouse or text cur-
sor to a field (f). Additionally, moving
the mouse over an anchor (c) will
open the menu of proposed field val-
ues (d). This technique provides more
information than VIO, which uses a
single static highlight color (Zimmer-
man et al. 2007), and Culotta and col-
leagues’ system, which uses different
colors for each group of related fields
(Culotta et al. 2007).

82 Al MAGAZINE

Evaluation Results

We evaluated RADAR using the con-
ference planning test to determine
how effective it is at assisting novice
users based upon learned models of
expert performance.'? The test com-
pared participant performance among
three conditions: Without Learning,
which had no learned models; With-
out MCA, which had all the learned
models except for the MCA ones; and
With MCA, which had all Al systems
active. We report here the results of
the fourth evaluation, which was con-
ducted in August 2008.

An evaluation score, designed by
external program evaluators, summa-
rized overall performance into a single
objective score ranging from 0.000 to
1.000, with higher scores reflecting
better performance on the conference
planning test (for full details, see Ste-
infeld et al. [2007]). It was important
that this score be tied to objective con-
ference planning performance rather
than a technology-specific algorithm
(for example, F1 for classification).
This technology-agnostic approach
allowed us to compare performance
across conditions given any technolo-
gy. The single objective score was cal-
culated from points earned as a result
of satisfying certain conditions, cou-
pled with costs and penalties. These
included the quality of the conference
schedule (for example, constraints
met, special requests handled), ade-
quate briefing to the conference chair,
accurate adjustment of the website
(for example, contact information
changes, updating the schedule on the
website), costs for the rooms, food,
and equipment for the conference,
and penalties for requesting that oth-
ers give up their existing room reser-

vations. The score coefficients were
two-thirds for the schedule, one-sixth
for website updating, and one-sixth
for briefing quality.

On this measure, With MCA partic-
ipants clearly outperformed Without
MCA participants, who in turn out-
performed Without Learning partici-
pants (ANOVA, F(2,76) = 83.7, p <
0.0001) (see figure 5 and table 1). A
subsequent Tukey post-hoc test found
that the three conditions were signifi-
cantly different from each other. All
but 3 of the 28 With MCA participants
earned higher scores than the average
score of the Without MCA partici-
pants (see figure 5).

Figure 5 shows that several partici-
pants in the Without MCA condition
earned much lower scores than others
earned, which we call the long tail of
performance. Earlier pre-MCA RADAR
evaluations had yielded similar results.
One of the motivations for building
the MCA was to improve the perform-
ance of the low-performing partici-
pants. The standard deviation of the
evaluation score dropped 44 percent
from the Without MCA to With MCA
condition, and the long tail of poor
performance in the Without MCA
condition did not occur in the With
MCA condition.

In summary, the evaluation of
RADAR with and without the MCA
has shown that it improves the mean
performance and reduces performance
variance by helping users who struggle
the most. Such results highlight how
Al technologies can provide function-
ality that helps wusers efficiently
accomplish their goals and can adapt
to different users’ needs.

Conclusions

The five-year RADAR project has con-
cluded with great success. A formal
evaluation of the RADAR system
showed that users, who were con-
fronted with an e-mail overload test,
performed much better when assisted
by learning technologies. The HCI
methods and principles described
above were crucial in building a
mixed-initiative system that was both
usable and useful, making the intelli-
gent outputs understandable and con-
trollable by users. Out of the hundred
people who worked on RADAR, only a
few had extensive HCI training. Based
upon this experience, we believe that
Al projects can produce significantly
more usable systems if they include
even a few HCI specialists, as long as
they are involved with the project
from the beginning and integrated
with the development members of the
team. We hope that this case study has
made HCI methods and principles
more accessible to Al researchers by
showing how they apply to Al sys-
tems. Additionally, our iterative
design approach with close coopera-
tion among the developers of the Al
and user interface components pro-
vides a good model for future intelli-
gent system development.

Acknowledgements

The authors thank Michael Freed,
Geoff Gordan, Jordan Hayes, Jeffery
Hansen, Javier Hernandez, Matt
Lahut, Pablo-Alejandro Quinones, Bill
Scherlis, Bradley Schmerl, Nicholas
Sherman, Daniel Siewiorek, Asim
Smailagic, Stephen Smith, Fernando
de la Torre, Pradeep Varakantham,
Jigar Vora, Yiming Yang, Shinjae Yoo,
Gabriel Zenarosa, and John Zimmer-
man. This material is based upon work
supported by the Defense Advanced
Research Projects Agency (DARPA)
under Contract No. NBCHDO030010.

Notes.

1. RADAR illustrates how Al can help users
accomplish their personal goals in ways that
fit into their desired work practices (see the
usability benefits theme article [Lieberman
2009] in this issue). RADAR explicitly mod-
els tasks and their interrelationships and
applies this model to particular cases while
the user is working. By contrast, the analy-

Articles

0.8 —
_ L
0.7 ._.-"E.'.. oo —_
g
o) _
o J—
V0.6 .
s | e
S | T
]
S 0.5
= _
>
e
0.4+
0.3 T
Without Without With
Learning MCA MCA
Condition

Figure 5. Evaluation Scores

The evaluation scores show that the MCA advice in the With MCA condition significantly
improved performance, reduced the performance variation, and eliminated the long tail of

poor performance.

ses of users’ tasks achieved with HCI usabil-
ity engineering methods yield an under-
standing that informs the system’s interac-
tion design but is normally not represented
or used in the system (see the usability engi-
neering methods theme article [Spaulding
and Weber 2009] in this issue).

2. Significant portions of the evaluation
materials are available to interested
researchers at www.cs.cmu.edu/~airspace.

3. The contextual inquiries conducted in
the RADAR project helped to identify the
specific ways in which users could benefit
the most from the addition of intelligent
functionality (see the usability engineering
methods theme article [Spaulding and
Weber 2009] in this issue).

4. The regular interaction between Al experts
and usability specialists in the RADAR team
made possible a “binocular” perception of
the design problems and possible solutions,
so that decisions about technology and
interaction design could be made together
rather than separately (see the introduction
[Jameson et al. 2009] and usability engineer-
ing methods theme article [Spaulding and
Weber 2009] in this issue).

5. Such commonsense knowledge can
improve a system'’s ability to understand
and communicate with users, thereby
enhancing the system’s usability (see the
usability benefits theme article [Lieberman
2009] in this issue).

6. The different types of errors that a sys-
tem may make (for example, missed oppor-
tunities versus false positives) can have
qualitatively different consequences for the
user’s responses to the system, ranging
from diminished effectiveness to confusion
and loss of trust. Moreover, these conse-
quences can change over time as a function
of the user’s experience. (For a more gener-
al discussion see the usability side-effects
theme article [Jameson 2009] in this issue.)

7. There were actually more tasks than task
labels since some e-mails contained multi-
ple tasks of the same type.

8. Because the task-centric interface repro-
duces many features of familiar e-mail
clients, it helps to avoid the usability side
effect of diminished aesthetic appeal (see
the usability side-effects theme article
[Jameson 2009] in this issue).

9. The way in which the MCA allows the
user to deviate from its suggested schedule,
while warning the user about potentially
dangerous deviations, represents a novel
way of giving the user control over the
nature of the interaction with an intelligent
system while still retaining the benefits of
intelligence (see the usability side-effects
theme article [Jameson 2009] in this issue).
10. The e-mail used in this example was
written to demonstrate all the features of
the user interface, and so it is more compli-
cated than a typical e-mail used during the

WINTER 2009 83

Articles

test. We did not run the natural language-
processing component on this e-mail.

11. This interface is a good example of an
effort to mitigate the usability side effects
of imperfect system performance by help-
ing users to detect possible errors before
they have any consequences (see the
usability side effects theme article [Jameson
2009] in this issue).

12. This section describes an especially elab-
orate evaluation of an intelligent interactive
system, and it illustrates some of the points
discussed in the corresponding section of
the usability engineering theme article
(Spaulding and Weber 2009) in this issue.

References

Bellotti, V.; Ducheneaut, N.; Howard, M.;
Smith, I.; and Grinter, R. E. 2005. Quality
Versus Quantity: E-Mail-Centric Task Man-
agement and Its Relation with Overload.
Human-Computer Interaction 20(1/2): 89—
138.

Beyer, H., and Holtzblatt, K. 1998. Contex-
tual Design: Defining Customer-Centered Sys-
tems. San Francisco: Morgan Kaufmann
Publishers.

Culotta, A.; Kristjansson, T.; McCallum, A.;
and Viola, P. 2007. Corrective Feedback and
Persistent Learning for Information Extrac-
tion. Artificial Intelligence 170(14-15):
1101-1122.

Fahlman, S. E. 2006. Marker-Passing Infer-
ence in the Scone Knowledge-Base System.
In Proceedings of First International Confer-
ence on Knowledge Science, Engineering and
Management, 114-126. Berlin: Springer.
Fink, E.; Bardak, U.; Rothrock, B.; and Car-
bonell, J. G. 2006. Scheduling with Uncer-
tain Resources: Collaboration with the
User. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics,
11-17. Piscataway, NJ: Institute of Electri-
cal and Electronics Engineers.

Freed, M.; Carbonell, J.; Gordon, G.; Hayes,
J.; Myers, B.; Siewiorek, D.; Smith, S.; Stein-
feld, A.; and Tomasic, A. 2008. RADAR: A
Personal Assistant That Learns to Reduce E-
Mail Overload. In Proceedings of Twenty-
Third Conference on Artificial Intelligence,
1287-1293. Menlo Park, CA: AAAI Press.

Garlan, D., and Schmerl, B. 2007. The
RADAR Architecture for Personal Cognitive
Assistance. International Journal of Software
Engineering and Knowledge Engineering 17(2):
171-190.

Gwizdka, J. 2002. TaskView: Design and
Evaluation of a Task-based E-Mail Interface.
In Proceedings of Conference of the Centre for
Advanced Studies on Collaborative Research,
4. Toronto, Ontario, Canada: IBM Press.

Jameson, A. 2009. Understanding and
Dealing with Usability Side Effects of Intel-

84 AI MAGAZINE

ligent Processing. AI Magazine 30(4).

Jameson, A.; Spaulding, A.; and Yorke-
Smith, N. 2009. Introduction to the Special
Issue on Usable Al. Al Magazine 30(4).

Kumar, M.; Das, D.; and Rudnicky, A. I.
2007. Summarizing Nontextual Events with
a “Briefing” Focus. In Proceedings of Recherche
d’Information Assistée par Ordinateur (RIAO).
Paris: Centre De Hautes Etudes Interna-
tionales D’Informatique Documentaire.

Lieberman, H. 2009. User Interface Goals,
Al Opportunities. AI Magazine 30(4).
Nyberg, E.; Riebling, E.; Wang, R. C.; and
Frederking, R. 2008. Integrating a Natural
Language Message Pre-Processor with
UIMA. Paper presented at the Towards
Enhanced Interoperability for Large HLT
Systems: UIMA for NLP Workshop at the
Sixth Conference on Language Resources
and Evaluation, Marrakech, Morroco, 31
May.

Spaulding, A., and Weber, J. 2009. Usabili-
ty Engineering Methods for Interactive
Intelligent Systems. AI Magazine 30(4).

Steinfeld, A.; Bennett, S. R.; Cunningham,
K.; Lahut, M.; Quinones, P.-A.; Wexler, D.;
Siewiorek, D.; Hayes, J.; Cohen, P.; Fitzger-
ald, J.; Hansson, O.; Pool, M.; and Drum-
mond, M. 2007. Evaluation of an Integrat-
ed Multi-Task Machine Learning System
with Humans in the Loop. In Proceedings of
NIST Performance Metrics for Intelligent Sys-
tems Workshop (PerMIS). Washington, DC:
National Institute of Standards and Tech-
nology.

Stylos, J.; Myers, B. A.; and Faulring, A.
2004. Citrine: Providing Intelligent Copy
and Paste. In Proceedings of Symposium on
User Interface Software and Technology, 185—
188. New York: Association for Computing
Machinery.

Varakantham, P., and Smith, S. 2008. Lin-
ear Relaxation Techniques for Task Man-
agement in Uncertain Settings. In Proceed-
ings of International Conference on Automated
Planning and Scheduling, 363-371. Menlo
Park, CA: AAAI Press.

Whittaker, S.; Bellotti, V.; and Gwizdka, J.
2006. E-Mail in Personal Information Man-
agement. Communications of the ACM 49(1):
68-73.

Whittaker, S., and Sidner, C. 1996. E-Mail
Overload: Exploring Personal Information
Management of E-Mail. In Proceedings of
Conference on Human Factors in Computing
Systems, 276-283. New York: Association
for Computing Machinery.

Yang, Y.; Yoo, S.; Zhang, J.; and Kisiel, B.
200S5. Robustness of Adaptive Filtering
Methods in a Cross-Benchmark Evaluation.
In Proceedings of the 28th Annual Internation-
al ACM SIGIR Conference, 98-105. New York:
Association for Computing Machinery.

Yang, Y.; Zhang, J.; and Kisiel, B. 2003. A
Scalability Analysis of Classifiers in Text
Categorization. In Proceedings of 26th Annu-
al International ACM SIGIR Conference, 96—
103. New York: Association for Computing
Machinery.

Zimmerman, J.; Tomasic, A.; Simmons, I.;
Hargraves, I.; Mohnkern, K.; Cornwell, J.;
and McGuire, R. M. 2007. VIO: A Mixed-
initiative Approach to Learning and
Automating Procedural Update Tasks. In
Proceedings of Conference on Human Factors
in Computing Systems, 1445-1454. New
York: Association for Computing Machin-

ery.

Andrew Faulring is a research programmer
in the Human-Computer Interaction Insti-
tute at Carnegie Mellon University. His
research interests include building usable
interfaces for Al technologies. He was heav-
ily involved in the design and implemen-
tation of many of RADAR'’s user interfaces.
He earned a B.S. in computer science with
a second major in human-computer inter-
action and an M.S. in computer science,
both from Carnegie Mellon University.

Ken Mohnkern was an interaction design-
er on the RADAR project. He is currently a
user experience architect at Buzzhoney, a
web-marketing firm in Pittsburgh, PA.

Aaron Steinfeld, Ph.D., is a systems scientist
in the Robotics Institute at Carnegie Mellon
University. He was the lead for RADAR eval-
uation activities and is currently the codirec-
tor of the Rehabilitation Engineering
Research Center on Accessible Public Trans-
portation (RERC-APT) and the area lead for
transportation-related projects in the Quali-
ty of Life Technology Engineering Research
Center (QoLT ERC). His research focuses on
operator assistance under constraints, that is,
how to enable timely and appropriate inter-
action when technology use is restricted
through design, tasks, the environment,
time pressures, or user abilities.

Brad A. Myers, Ph.D., is a professor in the
Human-Computer Interaction Institute at
Carnegie Mellon University. His research
interests include user interface develop-
ment systems, user interfaces, handheld
computers, programming environments,
programming language design, program-
ming by example, visual programming,
interaction techniques, and window man-
agement. He is an ACM Fellow, winner of
six best paper awards, and a member of the
CHI Academy, an honor bestowed on the
principal leaders of the field. He is a senior
member of the IEEE, and also belongs to
SIGCHI, ACM, the IEEE Computer Society,
and Computer Professionals for Social
Responsibility.

