
Artificial intelligence systems are increasingly capable of
doing the inference required to answer queries flexibly,
and an increasing amount of data is becoming available

in forms that support such inference (Lehmann, Schüppel, and
Auer 2007). Current successes in the area of knowledge capture
promise a rapid increase in such formally represented data, and
a large-scale knowledge base such as Cyc (Lenat and Guha 1989,
Matuszek et al. 2006), which contains appropriate background
knowledge (domain knowledge and general knowledge), sup-
ports semantically integrating that data to answer queries. A
substantial barrier to the widespread use of these systems is
query formulation: getting the system to correctly understand
what the user is trying to ask. 

In previous knowledge stores (such as relational databases),
fixed data schemata supported the skilled construction of fixed
formal queries, often embedded directly in application program
code and expressed in unambiguous query languages such as
SQL. At the same time, the small number of relations in these
databases made them comprehensible, allowing query con-
struction — by SQL-fluent programmers or by end users through
a custom query-construction application for that database —
after a fairly short training period. 

Querying knowledge bases, even those with weak inferential
support such as the current generation of Resource Description
Framework (RDF) triple stores, is an entirely different matter.
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� By extending Cyc’s ontology and knowledge
base approximately 2 percent, Cycorp and
Cleveland Clinic Foundation (CCF) have built
a system to answer clinical researchers’ ad hoc
queries. The query may be long and complex,
hence it is only partially understood at first,
parsed into a set of CycL (higher-order logic)
fragments with open variables. But, surprising-
ly often, after applying various constraints
(medical domain knowledge, common sense,
discourse pragmatics, syntax), there is only one
single way to fit those fragments together, one
semantically meaningful formal query P. The
Semantic Research Assistant (SRA) system dis-
patches a series of database calls and then com-
bines, logically and arithmetically, their results
into answers to P. Seeing the first few answers
stream back, users may realize that they need to
abort, modify, and re-ask their query. Even
before they push ASK, just knowing approxi-
mately how many answers would be returned
can spark such editing. Besides real-time ad hoc
query answering, queries can be bundled and
persist over time. One bundle of 275 queries is
rerun quarterly by CCF to produce the proce-
dures and outcomes data it needs to report to
the Society of Thoracic Surgeons (STS) — an
external hospital accreditation and ranking
body; another bundle covers the American Col-
lege of Cardiology (ACC) reporting. Until full
articulation and answering of precise, analyti-
cal queries becomes as straightforward and
ubiquitous as text search, even partial under-
standing of a query empowers semantic search
over semistructured data (ontology-tagged text),
avoiding many of the false positives and false
negatives that standard text searching suffers
from. 



With a potential relational and type vocabulary in
the millions of terms, users need much more sup-
port in constructing even straightforward queries.
And when the query language itself is more expres-
sive — supporting, for example, nested logical
quantifiers and temporal and modal operators —
the need to support users in correctly articulating
their intended query is even more dramatic. This
article describes progress we have made in devel-
oping such a query-articulation assistant, and how
we are applying it in the domain of health care.

Clinical researchers — and clinicians — need to
pose queries that are quite long and convoluted.
To further complicate matters, patient health
records and procedure notes are generally frag-
mented across many different, large, stove-piped
databases and knowledge stores, especially where
those records cross hospital departments and cross
decades of time. Cycorp and Cleveland Clinic
Foundation (CCF) have built an ad hoc query-
answering application called SRA (for Semantic
Research Assistant), based on Cyc (Lenat and
Guha, 1989). A physician types a query in English
to SRA. Then, working together in English, the
physician and SRA translate it into a logically
equivalent unambiguous predicate calculus form P
from which Cyc then designs and executes appro-
priate database calls. SRA displays answers as they
stream back, and can give symbolic rationales jus-
tifying each, bottoming out in general medical
facts (with provenance), expert-articulated rules,
specific patient records, contemporaneous opera-
tion notes, and so on. 

Preliminary results are encouraging: SRA is now
used to ask each clinical research query involving
cardiothoracic surgery, cardiac catheterization,
and percutaneous coronary intervention. Prior to
SRA, approximately 300 new queries in those
domains had been posed and answered each year,
with most queries requiring 1–10 weeks (occasion-
ally several tens of weeks) of real time to be
answered to the physician’s satisfaction; in 2010,
using SRA, such queries take 5–50 minutes to pro-
duce satisfactory answers (occasionally several
hours), and more than 2000 queries are processed
each week. Some of that large throughput is due to
the fact that persistent bundles of queries in those
domains are rerun each month (for internal quali-
ty-testing purposes) and quarterly (for external
third-party reporting purposes): for example, one
bundle of 275 queries produces the procedures and
outcomes data CCF needs to report to the Society
of Thoracic Surgeons (STS) — a hospital accredita-
tion and ranking body, and a bundle of 256 queries
produces the data CCF needs to report to the
American College of Cardiology (ACC). 

This same approach has also been applied, in
virtually unchanged form, to support queries
against a terrorism knowledge base (Deaton et al.

2005), corporate financial data, and wireless net-
work activity (Fortuna et al. 2009); we call that
domain-independent portion of SRA “CAE” for
“Cyc Analytic Environment” (Siegel et al. 2005). It
is supported by systems for knowledge capture
that, again, do not require knowledge of the under-
lying representational target (Schneider et al.
2005). Text search is ubiquitous and useful today,
thanks to Google and its predecessors, despite the
high frequency of false positives and false nega-
tives and the shallowness of inference being per-
formed (due to lack of understanding of the query
and lack of understanding of the text corpora
being queried against.) Our long-term goal for CAE
is to make the precise articulation (and answering)
of analytical queries over multiple knowledge
sources almost as straightforward for end users,
almost as useful, and through that path almost as
ubiquitous as text search is today.

The Challenge
Clinicians and clinical researchers often want to
pose ad hoc queries, such as:

Q1: “Are there cases in the last decade where
patients had pericardial aortic valves inserted in the
reverse position, to serve as mitral valve replace-
ments, and how often in such cases did endocardi-
tis or tricuspid valve infection develop, and how
long after the procedure?”

The researcher here is looking for patient cohorts
for clinical trials worth proposing and undertaking
— in this case, for example, investigating whether
there are unusually high (or low) risks of infection
by using pericardial aortic valve (pAV) prostheses
in ways they were most definitely not designed for,
and whether there have been enough cases for a
trial (to which the answer is no — for the databas-
es of hundreds of thousands of CCF patients treat-
ed over the past 20 years, there have not yet been
enough cases for a trial.) 

Clinicians might ask the very same ad hoc query
when looking for assistance choosing among treat-
ment options. For example, if the patient is a
young female addict with an extremely small
mitral valve annulus and a history of repeated
episodes of tricuspid valve infection, clinicians
could issue this query, knowing that aortic valves
come in smaller sizes than mitral prostheses, and
because they remember reading something (Car-
darelli et al. 2005) about pAV prostheses being
unusually resistant to infection and anticoagula-
tion compared to mitral valve prostheses. Here the
answer is yes: that usage of pAVs is rare but defi-
nitely not unprecedented. 

CCF is one of the leading medical research insti-
tutions in the world: clinical researchers formulate
hypotheses and ask ad hoc queries about the hun-
dreds of thousands of patients whose records have
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been painstakingly maintained over decades
(Kaple et al. 2008, Mihaljevic et al. 2008, Koch et
al. 2008, Hoercher et al. 2008, Gillinov et al. 2008,
Sabik et al. 2008, Hickey et al. 2008). And yet, even
at CCF, getting an ad hoc query answered has been
a long and convoluted process, of consultation
with multiple intermediaries some of whom are
familiar with the underlying medicine and some
of whom are familiar with the available databases
and registries. Often a back-and-forth clarification
dialogue occurs between the researcher and the
medically trained intermediary: “What exactly
does isolated procedure mean in your query?”
“When you say recently, how long ago do you
mean to include?” A second intermediary, a data-
base access specialist (DBA), transforms the result-
ing specification into an actual SQL or SPARQL
query, does the “data pull,” and sends the results
back to the first intermediary, who sends them
back to the physician. Often further back-and-
forth dialogue occurs between the two intermedi-
aries, occasionally requiring the first intermediary
to go back to the physician for some further clari-
fication. It is not uncommon for this entire process
to iterate several times, as the query is refined: the
e-mail logs tracking 900 of these queries over the
last few years at CCF show a mean time for this
process to complete of approximately one month
of real time, effectively limiting researchers to
about a dozen such queries per year. 

Our aim with SRA is to enable physicians to pose
their complex ad hoc questions directly, getting
them understood and answered in four minutes
rather than four weeks. Clinical researchers might
explore what today is a typical year’s worth of
hypotheses in one afternoon, and clinicians —
who today cannot even consider asking ad hoc
queries relevant to a particular patient — could
perform an individually tailored outcome analysis
in real time for that patient. As health-care
providers move toward ubiquitous adoption of
electronic patient records, the power of such data-
driven clinical practice will only increase. 

Although the application presented in this arti-
cle, SRA, is focused on medical research, similarly
complex ad hoc queries, and similarly convoluted
data-acquisition and aggregation processes, occur
in many other domains. A similar iterative query-
articulation process, but with human research
librarians as intermediaries, was once the standard
(Lang, Tracy, and Hepburn 1957) in many fields. 

Why was it that, until SRA, neither the clinician
nor the clinical researcher could expect to have ad
hoc queries like the previous Q1, answered in min-
utes instead of weeks? Partly it is because of the
many, and significant, AI challenges that have
stood between the enquirer and a deep under-
standing of the query.

Challenge 1
Getting the literal query understood: converting it
from highly ambiguous natural language to an
unambiguous logical form. Typical queries such as
those found on NIH’s clinicaltrials.gov website are
likely to contain numerous inclusion and exclusion
criteria; 100- and 200-word queries are common.1

But the state of the art of natural language parsing
today cannot reliably parse even shorter ad hoc
queries such as Q1 into a precise, unambiguous log-
ical or database query-language representation. 

Challenge 2
Getting the intended query understood. Often the
physician will leave off some obvious clauses and
details: temporal, spatial, causal constraints, equal-
ity or inequality constraints, and so on. For exam-
ple, in Q1, the physician might mean “... patients
at this medical center,” and/or “... aortic valves
with the type and manufacturer we have in stock
now,” and/or “... ignoring cases where the endo-
carditis developed more than a year after the pro-
cedure,” and/or “... in which the patient survived
at least 6 months postprocedure.” 

Challenge 3
Given a complete, unambiguous, logical form of
the intended query, finding the answer to that
query. This involves identifying the relevant rules
and algorithms that will serve as an acceptable
basis for computing an answer to that query;
deciding which of many (inevitably heteroge-
neous) databases and other structured information
sources to retrieve information from; actually gath-
ering the relevant data from those sources; and,
finally, carrying out the computations and reason-
ing steps to produce the answer. 

At an infrastructure level, this means worrying
about protocols and channels to access the n infor-
mation sources, dispatching the m different low-
level SQL or SPARQL or other API atomic queries,
combining the subqueries’ answers, and so on. 

At a higher level, this means being able to for-
mulate a complex plan for efficiently asking those n
data sources those m atomic queries. For each atom-
ic query, there may be additional reasoning required
to plan, for example, the best order of conjuncts.2

Challenge 4
Present the answers to the physician in a useful
fashion. This utility derives from presenting data
in a clear on-screen layout, and in a timely fash-
ion; what “useful” means may change from user to
user, situation to situation (for example, if users are
faced with a critical real-time decision), and query
to query. 

SRA explicitly reasons about presentation, trans-
forming the underlying logical data into human-
interpretable form — for example, choosing appro-



priate rows and columns, and appropriate row and
column headers, for a matrix of answers, which it
then presents to the user in the form of a table. Fur-
thermore, the contents of an individual cell in that
table are converted from the formal, and often
idiosyncratically coded, language returned by the
information sources into something that will be
meaningful to the physician. To take an extreme
example, a cell displaying as “#bnode-50943”
would mean nothing to the physician, compared
to the form produced by SRA’s use of Cyc Natural
Language Generation: “The CABG+MVA per-
formed at CCF by Dr. Joshua Stuyvesant at 8am on
March 3, 2007.”)3

A second aspect of “useful fashion” here refers
to temporal presentation as well: if there are going
to be 4718 cases matching the criteria, it can be
much better to start streaming a few of them in
every second, rather than waiting 4 minutes and
then displaying them all at once. Not only are
users impatient, they often can spot “mistakes” in
the first few answers returned, for example, due to
a clause they omitted — after which they would
just abort the query, revise it, and re-ask it. 

A third component of what is meant here by
“useful fashion” is to properly integrate and organ-
ize information coming from several different
sources, placing those pieces down to form a
coherent mosaic picture of the patient as a whole.
For example, given the cities and time stamps on a
large number of disparate elements of this patient’s
data, arrange them into a single chronology of
where this patient resided and for how long. 

A fourth component of “useful” here refers to
assessing the quality, certainty, and relevance of
the answers, and then sorting or filtering or anno-
tating the answers based on that assessment

Challenge 5
In cases where the system would otherwise fail to
return an answer, it should “fail soft”: that is, pro-
vide some form of semantic search results, drawing
from available texts in unstructured prose (or
almost unstructured form, for example, free text
that has been tagged with terms from an ontol-
ogy). That means fetching existing documents —
recent literature, web pages, internal reports — rel-
evant to the user’s query. The challenge is to pro-
duce higher retrieval accuracy than keyword-based
search engines by drawing on general knowledge,
medical knowledge, discourse knowledge, and
context, to avoid false positive inclusions and false
negative omissions.4

Meeting the Challenge
In meeting this challenge, SRA implements a
query-handling workflow illustrated in figure 1,
presented through the interface shown in figure 2.

The numbers 1–4 in the circles on figures 1 and 2
correspond to each other, and also correspond to
the next four paragraphs, explaining the workflow. 

Step 1
First, the user types in an English query. Since accu-
rate parsing of complex medical queries to precise
logical representations is well beyond the state of
the art, the main process used is an interactive clar-
ification dialogue between the system and the user
(see Step 2). The system reliably identifies concepts
in the query, such as “AVR” and “left atrial enlarge-
ment,” and uses the Cyc semantics of those con-
cepts to identify simple temporal, spatial, and role
relationships, which are used to construct candi-
date components for a predicate calculus query.
Some of these components have open variables
that will be used in connecting the components
together into a complete query. Even at this point,
learned knowledge (a trained decision tree) and
background knowledge from the knowledge base
have been used to filter the possible fragments into
a manageable set with a high likelihood of express-
ing the user’s intent. 

Step 2
Second, each fragment is represented in predicate
calculus, internally, but what the user of the sys-
tem sees is a paraphrase of each fragment back into
English as a set of fill-in-the-blank fragment phras-
es, where the blanks represent variables (for exam-
ple, “pericardial valve model _?x_ was implant-
ed”). Another of the fragments listed in figure 2 is
“the patient ID is “; this is a straightforward exam-
ple of inferring what the user intended to say but
didn’t literally say (see Challenge 2). Because most
complete queries end up with a column in the
answer table containing CCF patient ID numbers,
the system infers the need for such a query frag-
ment. Users highlight the fragments representing
parts of the query they had in mind and tell the
system to combine them.

Step 3
It is not a simple matter to combine a large num-
ber of fragments, often with two or more free vari-
ables, into a single correct nth-order predicate cal-
culus query. The huge conceptual vocabulary from
which the fragments have been selected makes the
problem especially difficult, since it would be
impractical5 to construct the corresponding set of
hard-wired combination rules. SRA brings the
entire Cyc knowledge base and inference engine
to bear in support of the combination process.
Common sense, discourse pragmatics, context,
medical knowledge, syntax, and so on, all come
into play. At a predicate calculus level, two of the
most common and most important decisions
being made are: (a) which variables unify with
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which other variables (that is, refer to the same
thing)? and (b) what is the type of each quantifier
(universal or existential) and the scope/nesting of
the quantifiers? In this case, for example, the vari-
ables might include the patient, the surgeon, the
valve-replacement procedure, the valve that is
implanted, the date/time of the procedure, and so
on. Common sense enables Cyc to conclude that
the patient and surgeon are distinct variables, and
also enables it to determine that the valve and the
implanting are distinct variables. Discourse and
domain knowledge enable it to infer that “the
patient” refers to a single individual, within the

query, as otherwise it would be absurdly produc-
tive (lead to a vast number of unrelated answers).
By leveraging the enormous existing Cyc knowl-
edge base (figure 3), it was only necessary to add
the specifics for this project: for example, that
AVRs are surgical procedures, and that pericardial
aortic valves are medical implants.6 The former
generalizes in Cyc’s ontology to event, and the lat-
ter generalizes to tangible object, and Cyc has, since
1985, understood the sort of disjointness between
those collections (Lenat and Guha 1989), which in
turn entails that different variables must represent
these two concepts all the way through to the
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Figure 1. Query-Handling Workflow.

SRA interacts with clinical researchers in English to build and execute precise logical queries against multiple knowledge sources. It uses the
Cyc ontology and Cyc inference, data access, and natural language components to support query building, knowledge federation, and
answer presentation. The same capabilities can be used to support collaborative knowledge base building. The numbers 1–4 in the circles
refer to more detailed discussion in the text, and also correspond to the like-numbered UI components in figure 2.



combined query. By contrast, a patient is known to
be a human being, which is exactly of the correct
type to play the role “recipient of service” in a
service event such as a surgical procedure. There-
fore, only one variable is needed to represent the

CCF patient (who necessarily has some CCF ID
number) and the recipient of the AVR procedure.
If the user now adds a clause about the primary sur-
geon, Cyc uses medical knowledge to infer that the
patient is not the surgeon.
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Figure 2. SRA Interface.

The Semantic Research Assistant system in use, building a formal understanding of the user’s intended query (for a cohort of patients).

Figure 3. Leveraging the Existing Cyc Knowledge Base.

The assertion about pericardial aortic valves (representing the fact that they are medical implants) was added in 2007, as a simple subset
(genls) ground atomic formula. This assertion allows Cyc to infer many things about pAVs, such as the fact that  —  drawing on years’ old
Cyc assertions  —  the valves should not in general be treated as events or people.



Step 4
The user clicks ASK, and the SRA system makes use
of Cyc background and domain knowledge,
together with metaknowledge about the CCF data-
bases, to produce the appropriate SPARQL and/or
SQL query or queries, dispatch them to the appro-
priate databases, and then arithmetically and/or
logically combine the results into an answer table
(this general capability is called Semantic Knowl-
edge Source Integration, or SKSI [Masters and
Güngördü 2003]). Because these results are
returned from inference as logical symbols, which
range from nearly incomprehensible to complete-
ly incomprehensible, Cyc’s NLG (natural language
generator) (Coppock and Baxter 2009, Baxter et al.
2005) is used to render table entries comprehensi-
ble. For the simple query shown, 1132 answers
were found. 

Figure 4 illustrates how the user can click an
answer to display the logical “proof” that led SRA
to it, rendered as a natural language argument
(Baxter et al. 2005). The data store being queried
did not represent this device as a pericardial aortic
valve, but as a Model9000IDE; Cyc provides the
background knowledge that each 9000IDE is a
pericardial aortic valve prosthesis and (from its
ontology of processes) that an implantation of an

aortic valve prosthesis is a replacement of the
patient’s aortic valve with that prosthesis, and so
on.

Such small “impedance mismatches” between
the way the query is stated and the way the various
database schemata carve up and represent the data
are pervasive; they are part of what makes this a
challenging problem. For example:

The physician’s query asks for “… mild valve regur-
gitation …” but the database represents this as
“valve_regurg 1+.”

The physician asks for “isolated CABGs” but the
database merely contains a set of primitive proper-
ties from which one could infer which procedures
were isolated and which were not isolated.

The physician refers to patients with “left atrial
enlargement” but the database stores the left atri-
um diameter in centimeters and medical knowledge
must be brought to bear to decide which patients
do and don’t fall into that category (in this case, the
Cyc knowledge base has one rule that says that
adult males fall into that category if their left atrial
diameter exceeds 4.2 centimeters, and another rule
that says that for adult females the cutoff is 3.8 cen-
timeters). 

These examples illustrate a partial realization of
the promise of AI systems, in this case the use of
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Figure 4. Displaying the Logical “Proof.” 

SRA logical justifications encourage user trust in answers.



tent. The query in figure 5 concerns patients who
had septicemia or bacteremia less than a month
after an AVR; the 3-box Time Graph timeline clar-
ifies (and is equivalent to) the more confusing final
five lines of the textual paraphrase of the query.

Both the Time Graph and the textual paraphrase
of the combined query (labeled “3” on figure 2) are
dynamic; a user can interactively modify, extend,
and “explore” them. A context menu on “aortic
valve replacement,” for example, displays the
ontology of broader, narrower, and related terms,
from which the user might select a replacement.
The small “cellphone-reception-bars” icon on fig-
ure 2 indicates how many answers that part of the
query is likely to generate, if asked in its present
form. Often users can tell from the presence of too
many, or too few, “reception bars,” that they must
not have finished correctly articulating their query. 

A reader might wonder whether, and how, the
full knowledge base and inference system of Cyc
are required for this task. To address this, we

inference to apply knowledge flexibly to solving
novel problems. By representing the meaning of
the medical terms, and the meaning of each data-
base’s schema elements, it is possible for Cyc to
reach similar conclusions about how data should
be connected and therefore find the same answers
as collaborating human experts with medical and
database skills.

Although SRA enables users to formulate their
queries using English, it also takes advantage of the
fact that it’s a computer communicating through a
GUI. It turns out that users have a difficult time
keeping temporal constraints straight, if they are
presented as English phrases; doing so is much eas-
ier when they are also drawn graphically. The
“Time Graph” (figures 5 and 6) visually depicts one
or more time lines, and events can be placed in rel-
ative or absolute positions on those time lines.
Again, the underlying representation is predicate
calculus, so the time line and English representa-
tions of the queries are automatically kept consis-
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Figure 5. Time Graph 1.

The English paraphrase of a temporal constraint, generated by Cyc. The bottom portion of the figure displays its redun-
dant (but pragmatically useful) graphical timeline representation.



metered the SRA system’s use of preexisting Cyc
knowledge (that is, assertions entered into Cyc
before our collaboration with CCF started in 2007).
We certainly expected some reuse, but were sur-
prised to find empirically that hundreds of preex-
isting pieces of prior and tacit knowledge in Cyc
were used for each ad hoc query. Cyc knowledge
base content was used during each step: interpret-
ing the literal meaning, inferring the intended
meaning, carrying out the clarification interaction
with the user, putting the fragments together into
a meaningful integrated whole, coming up with a
plan for answering the query by going out to data-
bases, optimizing each database query dispatched,
and deciding how best to display the answers to
the user. While there are certainly parts of the Cyc
knowledge base that are unlikely to be used in the
medical domain (facts entered for a historiography
thesis about Merovingian France, for example), the
scale of reuse suggests that identifying the reusable
elements in advance and constructing them afresh
for each new application would be a difficult and
expensive proposition. Having designed Cyc for
broad reuse, all those years ago (Lenat et al 1983;
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Lenat and Guha 1989; Lenat 1995) is now paying
off. In domains where users are likely to inject
metaphors and analogies into their queries, even
the more esoteric regions of Cyc knowledge space
may turn out to be useful for understanding the
intent of their query.

SRA as Natural Language Technology 
Our emphasis in designing the SRA, and the CAE
more generally, has been on supplying a usable,
responsive, and predictable user experience. We
have therefore avoided the use of the most sophis-
ticated parsing techniques available in the Cyc
platform and elsewhere in NLP research (for exam-
ple, Klein and Manning 2003, Kaplan et al. 2004);
while they have the potential to produce interpre-
tations of longer spans of the input text than cur-
rent, lexical-semantics-based technique, they do
not do so consistently enough and rapidly enough
for a predictable user experience. Moreover, the
relatively technical nature of medical queries,
which are not generally highly ambiguous at the
lexical level, makes them well suited for a shallow-
er approach based around identifying semantic

Figure 6. Time Graph 2.

The query “Patients with x less than 30 days after y in 2009” is ambiguous: which of the two events, x or y, had to hap-
pen in 2009? Graphically displaying both interpretations on a time line greatly reduces the chance of error (when com-
pared with just showing the user the two lexical paraphrases of the two meanings in English.)



terms used in the query. The shallow semantic
interpretation in SRA has been augmented with a
specific parser for important common relations
such as temporal constraints. Interpretation, then,
depends on dealing with the limited lexical ambi-
guity that does exist, and dealing comprehensive-
ly with ubiquitous syntactic ambiguity. This
includes producing a manageable set of alterna-
tives from which the user may indicate compo-
nent elements for a final query. The Cyc natural
language generation system is relied on particular-
ly heavily in this assembly process, both to present
candidate fragments for user selection, and to gen-
erate a clear reflection of the overall query under
construction. NLG is also used for presentation,
translating table headers and cell entries into user-
comprehensible form, and to foster user trust by
providing a facility to review system-generated jus-
tifications of its answers (figure 4). The next sec-
tions provide a little more detail.

Term Interpretation and Filtering. First, a user
query is scanned for single or multiword terms that
are known to Cyc. Coverage is already high
(around 24 percent of the 126,000 most accessed
Wikipedia pages from a typical hour had a corre-
sponding existing Cyc concept); for domains for
which custom knowledge representation has been
done (such as cardiothoracic surgery, in the SRA),
term coverage is nearly complete. Readers can
experiment with a slightly limited version of this
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lexical lookup by using the “find” web service
exposed at the Cyc website.7 This phrase lookup
produces a set of candidate interpretations, which
are then filtered using a decision tree trained for
the domain, which eliminates domain-improbable
senses. A portion of the tree for SRA is shown in
figure 7, along with an example from another
domain; because both the training and use of these
trees take advantage of the Cyc ontology, they can
make decisions at a general level (for example,
OrganismPart, MedicalEvent). This enormously
reduces the number of training examples that
must be used; the SRA filter was initially trained,
for example, by automatically tagging and then
manually annotating the relevance of the concepts
found in a mere 29 example query sentences.

Syntactic Analysis and Query Composition. To
understand what the user is saying to it, SRA rec-
ognizes terms and then infers partial meaning —
expectations and hypotheses about the user’s
intent (Shah et al. 2006); syntax is used as an
adjunct to this process. As an example, the pres-
ence of the term Hancock Model 342R (a type of
valve prosthesis) in a query, together with the
expectation-driving assertion 

(generateFormulasForElements-TermGenls 
CardiacValveProsthesis 
(TheSet valveProsthesisTypeImplanted 

valveProsthesisTypeExplanted)) 

causes the system to look for possible arguments

Figure 7. A Portion of the Tree for SRA.

To provide the precision needed for reasoning, English terms can have many possible logical interpretations. Decision
trees are used to filter these interpretations of terms in a query to ones appropriate to a domain. By using the ontology,
this filtering is done at a conceptual level that requires few training sentences and few decision points. The fragments
shown are substantial fractions of the trees in use. Such filtering rules would be nearly impossible to learn at the lexi-
cal level.



for these latter predicates (that is, valveProsthe-
sisTypeImplanted and valveProsthesisTypeEx-
planted), based on their argument type con-
straints. Assertions in the Cyc knowledge base
constrain the first argument of the ternary predi-
cate valveProsthesisTypeImplanted to be an
instance of HeartValveReplacement-SurgicalProce-
dure, that is, a particular surgical event; constrain
the second argument to be a type of CardiacValve-
Prosthesis; and constrain the final argument to be
a particular individual CardiacValveProsthesis. 

The second argument is clearly the valve type
Hancock Model 342R whose mention triggered the
expectation, but once that expectation has been
set, any nearby mention of a specific surgery will
be a strong candidate for argument 1, and a men-
tion of a specific valve (for example, by its unique
manufacturer serial number) will be a strong can-
didate for argument 3. If suitable arguments are
not available, the unfilled positions are left as open
variables — typed variables that will most likely get
unified, under inference-based constraint, when
the user selects other fragments. At that time, all
those puzzle pieces, with their accompanying con-
straints, get fitted together into a consistent and
plausible whole. Variables that still remain will be
open variables in the database queries and will
therefore define what columns need to be present
in the answer matrix. For example, a common one
of those is the exact date and time of the surgery;
another is the patient’s ID number.

SRA’s expectation-driving assertions for the
medical domain have been generated manually by
knowledge engineers, in consultation with domain
experts, to maximize usability; this is possible
because the domain is somewhat narrow. For
broader applications, however, and where less con-
trol is needed, such expectations can be generated
by forward inference. The previous “generateFor-
mulas” sentence, for example, could have been
generated entirely automatically using the facts
that (1) the specificity of its second argument type
is high and (2) this argument type constraint does
not apply to many predicates. This sort of metar-
easoning about predicates and the contents of the
knowledge base is straightforward, pervasive, and
(therefore has been engineered to be) particularly
efficient in Cyc. 

Generally, the filtering decision trees described
previously, and the use of specific expectations to
combine terms into fragments, are sufficient to
offer users a tolerably small set of potential frag-
ments from which to form a query. In some cases,
though, syntax is very helpful — in the SRA appli-
cation, for example, where the ordering of events
is particularly important, mixed semantic/syntac-
tic templates are used to recognize and understand
temporal constructions. For example, matching
the pattern “<Isa:CCFMedicalEvent> between

<Isa:TemporalThing> and <Isa:TemporalThing>“
causes its arguments to be interpreted as (tempo-
rallyBetween-Inclusive <arg1> <arg2> <arg3>). 

It’s worth noting that the broader Cyc natural
language system supports the use of patterns of
this kind for almost all predicates and event types.
For example, figure 8 shows the pattern that
enables parsing of phrases “<AGENT> [operate]
<DEVICE>,” for any form of the word operate, to be
interpreted as an event in which a device was used
(such as “Marvin Minsky operated the PDP-6”). 

Figure 9 shows the final stage in query composi-
tion, where Cyc uses inference (usually supported
by assertions about predicate argument type con-
straints and collection disjointness, as in this case,
but potentially using any assertion in the knowl-
edge base) to determine which ways of combining
a new fragment with an existing query are plausi-
ble and which are incoherent. In this surprisingly
typical case, it is able to eliminate all possibilities but
the correct one in a fraction of a second. Limited
metareasoning is performed: if two clauses are
added with descriptions that differ only with
respect to specificity (that is, a description of a sur-
gery, and a valve repair), they are assumed to refer
to different entities; even though it is logically pos-
sible that the surgery in question is the valve
repair, it is unlikely that this was the user’s intent.

Natural Language Generation. Natural language
generation is used both for the interaction with
users as they express their queries and in display-
ing and justifying the answers found during infer-
ence. Three kinds of generated text are particular-
ly important: query fragments, variables and table
headers, and table cell contents. Query fragment
generation is driven from knowledge base content
that describes how to generate syntactically correct
renderings of predicates and their arguments. In
fact, as we’ll describe later (and have described in
Baxter et al. [2005]), Cyc NLG can render more
complex logical sentences, and SRA uses that capa-
bility both for temporally complex fragments, to
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Figure 8. A Pattern That Enables Parsing.

General Cyc parsing encodes the lexical semantics of words using semantic
translation rules. The use of heuristic-level (HL) modules obviates the need to
run these rules dynamically during SRA operation.



confirm the overall query and, on demand, to fur-
nish justifications of answers. For brevity, here
we’ll confine detailed discussion mainly to the
generation of fragments.

Consider valveProsthesisTypeImplanted, the ter-
nary predicate that relates a particular valve sur-
gery to the type of prosthesis used and is offered as
a fragment whenever a user mentions something
that is known to be a (kind of) valve prosthesis.
The Cyc assertion in figure 10 expresses how this
predicate and its arguments should be generated,
including the requirements that the arguments be
rendered as noun phrases, and that the first verb in
“in the heart valve replacement :HEART-VALVE-
REPLACEMENT, :VALVE-PROSTHESIS is implanted
and is a :TYPE-OF-VALVE-PROSTHESIS” should be
an appropriate tense form of “to be” that agrees in
number with the paraphrase of the first argument
of the predicate. 

The arguments of the predicate are replaced by
concrete events, items and types, variables, or
sequences of underscores, as appropriate. For
speed, when SRA first displays this fragment, it
does so without agreement; full generation is done
in the background, and each of the phrases is
replaced with the morphologically correct variant
as it is ready.

Because it is important to render phrases involv-
ing time clearly, specific patterns for rendering por-
tions of a logical sentence are used in these cases.
These patterns, which are produced by forward
inference, involve a template, as shown on the left
of figure 10, and a generation template similar to

the one shown in figure 11, and produce a concise
paraphrase of all matching parts of a logical sen-
tence. The query sentence in the figure is para-
phrased as “What aortic valve replacements in 2007
occurred before what myocardial infarctions?” 

Since SRA users are formulating queries, the sys-
tem needs to have a way to refer to the items they
are trying to find. It does this using variables and
corresponding table headers. Both are generated
using constraints derived from the context in
which they appear. In some cases, Cyc has explicit
knowledge of how to refer to the role of a predicate
argument; for example the assertion (denote-
sArgInReln Diagnose-TheWord CountNoun hasDi-
agnosis 2) means that the second argument of the
predicate “hasDiagnosis” can be referred to as
“diagnosis,” the count noun form of the word diag-
nose. There are 1750 such assertions in the knowl-
edge base, but if this information is not available,
more general constraints are used: the argument
type constraints for the predicates in which the
variable is used are gathered (for example, valve-
ProsthesisTypeImplanted, which we saw previous-
ly, is constrained to have a valve replacement pro-
cedure as its first argument, a type of heart valve
prosthesis as its second, and a particular valve as
its third), along with explicit type constraints on
the variable (through “isa” [instantiation], or
“genls” [subclass], clauses in the query). The most
specific of these constraints are tried first, and the
first one that can be rendered as a nonplural noun,
has not been used elsewhere, and is not more than
30 characters long is used. In the user interface
screenshots, one can see several variables and col-
umn headers that have been generated this way,
including “PATIENT,” “BLOODSTREAM-INFEC-
TION,” and “ELAPSED-TIME.” Recently, in
response to user feedback, the system was altered
to maximize variable name consistency; it no
longer replaces a variable name with a new one
merely because its constraints have tightened dur-
ing query refinement.

The current SRA attempts to compromise
between the reach of the NLP techniques applied
and the need for responsiveness. As machines
become more powerful, it becomes possible to
attempt more sophisticated analysis. In the short
term, in work with Elizabeth Coppock, we are
exploring applying semantic combination rules, in
which the co-occurrence of specific patterns of log-
ical interpretation in parts of an input query trig-
gers the production of a correct (possibly different)
representation of an overall situation, and the
rejection of alternatives. In the longer term, we are
exploring techniques for automatically learning
logical interpretations of constructions, by reading
(Curtis et al. 2009)

Failing Soft: Semantic Search Based on Cyc. The
aforementioned process does not always succeed,
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Mt:  EnglishParaphraseMt 
(genTemplate  valveProsthesisTypeImplanted   

  (ConcatenatePhrasesFn   
  (BestNLPhraseOfStringFn "in the heart valve  

   replacement")   
  (TermParaphraseFn-NP  :ARG1)   
  (BestNLPhraseOfStringFn  ",")   
  (TermParaphraseFn-NP  :ARG3)   
  (HeadWordOfPhraseFn   

  (BestVerbFormForSubjectFn  Be-TheWord   
  (NthPhraseFn  2)))   

  (BestNLPhraseOfStringFn  "implanted  and  is  a")   
  (TermParaphraseFn-NP  :ARG2))) 

Figure 9. The Final Stage in Query Composition.

Inference based on (1) explicit type information (isa and genls) and (2) pred-
icate argument constraints determines how to combine new fragments to
form a more complete query.



for example, when the data required to answer the
query is still “locked up” in more or less unstruc-
tured form such as natural language texts. This
brings us to Challenge 5, semantic searching (ver-
sus just keyword searching) in cases where the cor-

rect answer cannot be calculated due to failure to
understand the query, or due to missing structured
data. Our approach to this is similar to Challenges
1–4 at the internal SRA representation and algo-
rithms level, but visually appears quite different to
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(#$and 
   (#$isa ?PROCEDURE1 
 :PROCEDURE-TYPE1) 
   (#$isa?PROCEDURE2 
 :PROCEDURE-TYPE2) 
   (#$after-CCF ?PROCEDURE1  
              ?PROCEDURE2) 
  (#$dateOfEvent-CAE   
 ?PROCEDURE2    :DATE)) 

(#$and (#$isa ?INFARCTION #$HeartAttack)  
     (#$after-CCF      ?INFARCTION      
  ?MEDICALLY-RELATED-EVENT) 
     (#$isa ?MEDICALLY-RELATED-EVENT 
           (#$SubcollectionOfWithRelationToTypeFn 
 #$HeartValveReplacement-SurgicalProcedure  
                #$objectActedOn    #$AorticValve)) 

"What aortic valve replacements in 2007 occurred before what myocardial infarctions?"

Figure 10. A Cyc Natural Language Generation Assertion.

Figure 11. Specific Generation Template

Multiple components of a logical sentence can be selected for simultaneous paraphrase. Because the logical sentence on the right matches
the pattern on the left, a specific generation template can be used to generate the clear English shown at the bottom of the figure in quotes.



the user. In figure 12, semantic search is enabled
for the paragraphs and pages of the annual “Out-
comes” booklet issued by the cardiothoracic sur-
gery division of the Cleveland Clinic. The user, a
prospective patient, types in “heart attack.” But the
Outcomes booklet does not contain that colloqui-
al term anywhere. Even worse, the only places
where those two terms do co-occur in proximity
are on pages that are both irrelevant and frighten-
ing to the prospective patient (for example, about
heart-lung transplants.) Nevertheless, relevant
“hits” are returned because the Cyc ontology knew
that “heart attack” was a denotation for myocar-
dial infarction (MI), and the Cyc knowledge base
knew that coronary artery bypass graft (CABG) is a
common treatment after MIs, and because seman-
tic tagging had identified which paragraphs and
pages were about CABGs. Similarly, semantic rep-
resentations of MIs, flesh-eating bacteria, heart-
lung transplants, and so on, allowed it to not
retrieve those irrelevant pages even though a
string-based search engine would not have under-
stood and would have included those false posi-
tives.

If the user clicks Gonzalez-Stawinski here, the
system utilizes its partial understanding of the
query, and of the retrieved pages, and displays not
only the usual “page” about that surgeon, but also
an extra graph that does not normally appear “out
of context” on that page but is very useful to a
prospective patient. This graph, derived from the

CCF databases, shows the number of CABG proce-
dures that surgeon has performed each year for the
past decade. 

Conclusion and Next Steps
SRA and, more broadly, the Cyc Analytic Environ-
ment, CAE, are intended to serve as a bridge
toward a future where our systems deeply under-
stand the intent behind user queries, where our
systems actively seek out background knowledge
and data that must be used to satisfy them. We
have experimented with the CAE, on which SRA is
based, in the terrorism and financial domains, and
believe that it is generally useful. To realize the
broadest benefit, though, it needs to be the case
that nearly every query term will be understood by
the system; part of this requirement is being met
by initiatives such as linked open data, which is
driving a great increase in the availability of data
grist for inference. SKSI allows Cyc to make use of
such data, and data in more conventional databas-
es, during inference.

But to support natural queries, the terms must
be described in enough detail to allow their lexi-
calizations to be recognized and their likely rela-
tions to other terms to be identified. Although the
manual effort of building Cyc has been worth-
while, as a sort of “priming of the pump,” we now
have interfaces that allow us to bootstrap from that
knowledge in acquiring more. The CURE (content
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Figure 12. Semantic Searching.



understanding, recognition, or entry) interface,
shown in figure 13, allows concepts to be created,
and fleshed out with relevant assertions, by
untrained users. CURETTE is a lightweight version
of CURE that can easily be embedded in web pages.
In the longer term, the prospects for increasingly
automated knowledge acquisition seem bright. We
have been working on automated rule learning
over large conceptual and relational vocabularies
(Cabral et al. 2005, Curtis et al. 2009), and are par-
ticipating in the DARPA Machine Reading Pro-
gram, in support of this goal.

The other key to broad applicability is simply
having the inferential scale needed to support
queries depending on very large rule sets applied
to web-scale data. We have steadily increased the
speed with which the Cyc inference engine oper-
ates, and the size of the knowledge bases that it can
handle, and are pursuing paths to even greater

scalability through our participation in the EU
LarKC research program (Fensel et al. 2008), which
is attempting to build a platform (based on part of
the Cyc source code) for web-scale inference.

Within SRA, a clinical researcher should be able
to explore novel hypotheses requiring logically or
statistically combining information from multiple
medical specialties; using SRA, a clinician should
be able to state a cluster of potentially interrelated
attributes and values for a patient, and ask about
similar patients’ treatments and outcomes. The
natural way to investigate this will be by expand-
ing the underlying ontology and knowledge base
to more and more domains (for example, the next
targets at CCF include electrophysiology, interven-
tional and diagnostic cardiac catheterization, heart
failure and transplantation, and infectious dis-
ease.) We wish to explore, as those domains are
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Figure 13. The CURE Interface.

The content understanding, review, or entry (CURE) interface, allows nonlogicians to enter knowledge by answering questions. As initial
questions are answered in the form, inference based on their answers prompts additional questions.



added, whether some of the components of SRA
(for example, the parser) “scale up” better or worse
than others, and whether the SRA becomes quali-
tatively more useful by handling queries cutting
across many departments and databases. 

Even using tools like CURE, domain scaling
requires considerable but tolerable effort; consider
cardiac catheterization (“cath”). Even though at
CCF there are separate departments and separate
databases for diagnostic cath and interventional
cath, there is sufficient overlap in concepts and ter-
minology that they may be treated as one domain
for SRA purposes. The approximately 500 new con-
cepts and 6500 new assertions that are currently
being added, for this domain, include knowledge
about types of catheters and attachments, associ-
ated devices such as those for stemming
postremoval blood loss, common procedures and
their substeps (down to the level of ordering and
other constraints among the substeps of a proce-
dure), diagnostic rules, relevant anatomy, diseases,
medications, indications and contra-indications,
and heuristics (rules of good judgment) about
degrees of risk and likelihood of outcomes. About
half of the 6500 new assertions for this domain are
lexical assertions, expressing the various ways each
of the 500 new concepts is denoted in “medical
English” and tying it to standards including
SNOMED and ICD-9 and ICD-10, along with more
traditional linguistic assertions indicating for
example whether each noun is a count noun or
mass noun. The other half of the 6500 represent
pieces of medical knowledge about cath, assertions
involving one or more of the 500 new terms, and,
in almost all cases, also involving one or more of
the preexisting 500,000 concepts in the Cyc ontol-
ogy, partially defining those new concepts and
integrating them into the existing ontology.

The initial acquisition of concepts, terminologi-
cal assertions, and medical knowledge assertions
for each domain is done top down. For example,
for cardiac catheterization, the first step was to use
Kern (2004) as a reference. The next “pass” after
that, which is currently underway, is to expand the
ontology and the knowledge base as needed by
looking at a representative sample of clinical
research and clinical queries involving terms from
that domain. Many of the former can be harvested
automatically from websites such as clinicaltri-
als.gov, and some of both types can be retrieved
from logs of recent manually-translated-into-data-
base-form queries. 

Smarter Data Entry
Patients who are admitted to multiple departments
at a medical center often are asked the same or
related questions (for example, about family histo-
ry) repetitively. By installing the SRA “behind” the
data acquisition screens, some of this can be avoid-

ed. Some such data can be inferred unambiguously
from already-entered data about that patient; in
other cases, the range of possible answers can at
least be constrained (resulting in, for example, a
small or smaller menu of choices). When contra-
dictory information inevitably is added about a
patient, there is at least the possibility of recogniz-
ing it in real time — deducing that there is a logical
conflict — and flagging it. And when there are mul-
tiple “blanks” yet to be filled in, instead of provid-
ing no guidance (or, even worse, locking the data
enterer into a fixed sequence of queries to respond
to), the system could infer and highlight the
queries that would be “best” to answer next. In this
case “best” includes an information-theoretic com-
ponent (answering this query next is likely to con-
strain many other as-yet-unasked queries), an out-
comes component (answering this query next
might turn out to be vital to providing this patient’s
urgent care), and a cognitive load component
(don’t “jump around” changing contexts more
than necessary); other heuristics no doubt apply.

Clinical Use
Although the SRA has been developed in the con-
text of cohort selection for clinical outcome stud-
ies, the current push toward standardized electron-
ic patient records suggests an even more powerful
future use: directly data-driven clinical practice, in
which treatment outcome predictions for a partic-
ular patient are dynamically produced by analysis
of the outcomes of the most similar other patients.
The SRA would be used to query about individual
cases; for example: “This patient has had elevated
creatinine levels since the patient’s mitral valve
repair and has a history of renal failure. What have
been the recommended treatments over the past
five years for patients with these conditions?” The
same kinds of database queries would be generated,
but instead of a cohort of patients being returned,
sets of treatment options and outcomes would be
retrieved and statistically analyzed.

Relating Qualitative 
and Quantitative Terms
Often, part of the “full understanding” of the user’s
query means interpreting qualitative terms like
small, minor, enlarged, significant, unusual, and so
on. While relative terms such as these can be
expressed in Cyc, often the physician “really” has
some more precise meaning in mind. For example,
figure 14 shows an assertion recently added to SRA
(that is, to the Cyc knowledge base), expressing in
predicate calculus a criterion for left atrial enlarge-
ment in women: in working with the physicians to
articulate this and express it sufficiently rigorously
in CycL, it turned out that what they meant — in
their domain — was: having an atrial diameter
exceeding 3.8 centimeters. 
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More Deeply Infer What the 
User Plausibly Intended by the Query
The goal is to steadily reduce and eliminate the
need for human intermediaries “in the loop,” and
to reduce and eliminate the need to ask the physi-
cian any follow-up clarifying questions. This is an
iterative process, incrementally approaching com-
petence by training the system on a large corpus of
examples. The existing CCF library of more than
1000 intermediary-processed queries forms a natu-
ral starting point for this corpus. Augmenting this
are tens of thousands of others from various
domains on www.clinicaltrials.gov. To expand the
corpus, clinical researchers should produce alter-
nate versions of each query, providing a number of
different plausible syntactic forms and wordings
for the same semantic query. 

At present, the SRA system uses three sources of
information to establish meaning: syntax, statistics,
and background knowledge. All three could be uti-
lized even more than they currently are. Syntacti-
cally, we can expand detailed parsing from its cur-
rent application to identifying relations and
arguments, and deep understanding of time expres-
sions to cover correct assignment of the roles in a
syntactic frame, and to analyzing the internal struc-
ture of novel noun phrases. This should significant-
ly reduce the number of candidate fragments. In sta-
tistics, we hope to extend the trained filtering that
currently identifies plausible senses of terms given
the topic to jointly maximize the probability of an
interpretation over multiple ambiguous query
terms. We will train a probabilistic model of modi-
fier attachment, to allow more “query fragments” to
be automatically assembled. Finally, regarding back-
ground knowledge, we plan to write new disam-
biguation and “fragment” addition rules, and tight-
en the logical constraints on arguments of logical
relations, to enable more effective use of the knowl-
edge added for interpretation.

Part of the source of power being tapped by SRA
is the fortuitous fact that natural language under-
standing for detailed queries, even quite long
queries, can — at least in the medical domains
explored to date — be performed in a largely com-
positional fashion, recursively constructing and
refining pieces of the overall query, rather than hav-
ing to reason very much about the query as a whole.
Only once the query is mostly understood, and few
ambiguities remain, is it practical to reason about
“far apart” pieces of the query to see whether med-
ical knowledge, discourse pragmatics, or data in the
target databases can point to a resolution. 

Synthesizing a Terser Yet More Compre-
hensible Answer for the User
Condensing, formatting, and exporting the
answers to a user’s query sounds like a “frill,” com-
pared to the task of actually getting the correct

answers to the question. So we were surprised to
find that empirically this has been one of the
biggest factors affecting whether and to what
extent physicians directly use the SRA. 

The first and easiest “side” of this task to focus
on will be getting SRA to intelligently pare down
the answers, and especially the justifications for
the answers, removing as much prior and tacit
knowledge as possible. SRA will do this by drawing
on much the same knowledge used in understand-
ing the queries and in formulating a plan to
retrieve elements of data from which to answer the
query. Producing a clear answer or justification has
syntactic features (combining n attributes of a pro-
cedure into a single descriptive noun phrase),
trainable probabilistic features, and background
knowledge. But besides general knowledge and
medical knowledge, success at this task will depend
on building up and using a powerful explicit mod-
el of users — for example, what do they know and
not know; what sorts of details do they like and
not like to see included; what queries have they
recently asked of the system; what is their purpose
in asking this query? Consider, for example, the
last of those variables, their purpose: even at a very
broad level, if they have a clinical research purpose
in asking the query, the sort of answers, time frame
for the answers, and so on, is quite different than
if they are clinicians asking about a particular
patient. This notion of the users’ context is repre-
sented explicitly in Cyc, and thus can be easily rep-
resented in SRA. Experimental approaches for
using explicit user and task models that were
developed for intelligence analysis (in the Cyc
Analytic Environment, CAE, on which the SRA was
initially based) will be applied and extended to the
medical domain. The important user and task
attributes, and the rules associated with each one,
will be captured in postusage debriefing sessions.
User modeling research indicates that even rela-
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(implies                                                
(and 
      (cCFhasLeftAtriumDiameter  ?EVT  ?D) 
      (greaterThan  ?D  ((Centi  Meter)  3.8)) 
      (patientTreated  ?EVT  ?PAT) 
      (patientSex  ?PAT  FemaleHuman) 
      (rdf-type  ?EVT  ?TYPE) 
      (genls  ?TYPE  CCF-Evaluation)) 
   (isa  ?EVT  EvaluationThatIndicates- 
          LeftAtrialEnlargement)) 

Figure 14. A Typical Domain 
Assertion Added to SRA.



tively small user models and context models are
sufficient for establishing enough details to sustain
a high degree of user comfort with question-
answering programs. In particular, we expect this
to lead to very few new concepts being added to
the ontology, but to a large number of rules being
added relating user variables (and variables about
the context in which the user is currently interact-
ing with the system) to display modality, location,
priority, format, and editing choices.

Extending the Current 
Semantic Searching Capability
There are two methods by which Cyc-based
semantic searching is performed. The “strong” ver-
sion is to partially parse a large corpus of text doc-
uments, much as SRA partially parses users’
queries. This leads to an identification of what that
document (and that paragraph in that document)
is about, the ontological terms — individual
objects, collection, predicates, and relations — and
some of the fragmentlike clauses (predicates
applied to arguments, sometimes with some of the
arguments being left as quantified variables). By
partially parsing the user’s query, Cyc can then per-
form inference to find connections (and their
semantic strength) between the query and each
document in the tagged corpus, or even each para-
graph.

The second, “weak” version of semantic search-
ing involves taking the English paraphrase of the
query, to the extent available, or the initially typed
query, to the extent the paraphrasing failed, and
then augmenting the query with “OR” clauses —
disjoining Boolean terms — based on their being
alternative ways of denoting the same terms or
very close “relatives” in the ontology, and aug-
menting the query with conjoined “AND NOT”
clauses where there are different, unintended
denotations for some of those very same words
and phrases, in each case finding some very close
“relatives” of those unintended concepts (“betray-
ers”) so that any false negative page found for the
term is likely to contain one or more of those
betrayers. In a query like “Rhinoplasties performed
in TX or MI during 1991,” “MI” refers to Michigan,
so synonyms of “myocardial infarction” would be
the AND-NOT terms augmenting the query before
handing it to Google or PubMed. 

Unlike the other SRA extensions we have just
described, this one may succeed or fail based more
on the algorithms developed for it. For example,
one possible algorithm would be to generate alter-
nate paraphrases of the query, find “hits” for each
paraphrase, and upgrade “hits” that turned up for
multiple paraphrases.

One of the factors we do not yet have much in
the way of preliminary results about is the extent
and way in which the clinical researcher and the

clinician will make use of this capability, and that
will be one of the things we hope to discover
empirically. We already described how one use of
semantic searching is as a fallback: the users will
still likely want to see pointers to relevant recent
literature even in cases where SRA can answer their
query. Seeing such articles may be of value to them
in more rapidly converging on the queries they
most want to ask, queries which in some cases will
be answerable by SRA.

Future Improvement
We have made progress in getting SRA to answer
physicians’ ad hoc queries about patient data
orders of magnitude faster than what had been
“best practices,” but there is much room for, and
many different directions for, future improvement
and wider application. As was the case with search
engines, once the process of formal ad hoc query
articulation through clarification dialogue is suffi-
ciently fast and easy to use, and incorporates
appropriate privacy controls, the general public
may become the heaviest users, leading to a quali-
tative change in the way that patterns are first
detected in patient data, and to a qualitative
improvement in patient informedness, involve-
ment, satisfaction, and outcomes.
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Notes
1. For example, the web page clinicaltrials.gov/ct2/show/
NCT01030328?term=pav&rank=4 takes 258 words just to
state its inclusion and exclusion criteria.

2. Although SQL optimization is standard in relational
database systems today, an increasing amount of medical
data is represented in the newer RDF/OWL semantic
triple store systems accessible by SPARQL queries, for
which such optimization has not yet become available,
resulting in queries taking orders of magnitude too long.
We expect this problem to solve itself in the next five
years, as commercial SPARQL optimization catches up
with SQL optimization.

3. For HIPAA reasons, these and other instance-level
health-care data presented in this article are anonymized
references to fictional patients and events.

4. Although fail-soft capabilities were implemented in
the CAE, on which SRA is based, and have been applied
experimentally to the use of outcome data in end-user
search (see the subsection on semantic search based on
Cyc), they have not been integrated deeply into the SRA’s
initial research cohort selection application.

5. The cardinality of such a set would exceed the number
of atoms in the universe.

6. The Cyc term MedicalCareEvent was created fifteen
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years earlier, on January 24, 1996. The Cyc term Implant-
Medical was created on August 26, 1999, and had addi-
tional assertions added in 2001, ’02, ’03, ’04, ’06, ’07, ’08,
and ’09.

7. The query at ws.opencyc.org/webservices/concept/
find?str=surgery will, for example, return an XML docu-
ment identifying the URI http://sw.opencyc.org/con-
cept/Mx4rvViynJwpEbGdrcN5Y29ycA, which is the
OpenCyc concept for the CycL collection #$Surgery.
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