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W Currently the largest gap between human
and machine learning is learning algorithms’
inability to perform deep transfer, that is, gen-
eralize from one domain to another domain
containing different objects, classes, properties,
and relations. We argue that second-order
Markov logic is ideally suited for this purpose
and propose an approach based on it. Our algo-
rithm discovers structural regularities in the
source domain in the form of Markov logic for-
mulas with predicate variables and instantiates
these formulas with predicates from the target
domain. Our approach has successfully trans-
ferred learned knowledge among molecular biol-
o8y, web, and social network domains.
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and apply it to an entirely different one. For example, Wall

Street firms often hire physicists to solve finance problems.
Even though these two domains have superficially nothing in
common, training as a physicist provides knowledge and skills
that are highly applicable in finance (for example, solving dif-
ferential equations and performing Monte Carlo simulations).
Yet standard machine-learning approaches are unable to do this.
For example, a model learned on physics data would not be
applicable to finance data, because the variables in the two
domains are different. Despite the recent interest in transfer
learning, most approaches do not address this problem, instead
focusing on modeling either a change of distributions over the
same variables or minor variations of the same domain (for
example, different numbers of objects). We call this shallow
transfer. Our goal is to perform deep transfer, which involves gen-
eralizing across different domains (that is, between domains
with different objects, classes, properties, and relations). Per-
forming deep transfer requires discovering structural regularities
that apply to many different domains, irrespective of their
superficial descriptions. For example, two domains may be mod-
eled by the same type of equation, and solution techniques
learned in one can be applied in the other. The inability to do
this is arguably the biggest gap between current learning sys-
tems and humans.

People are able to take knowledge learned in one domain
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We believe that an approach to deep transfer
should satisfy three desiderata. First, it should be
relational in order to capture properties among dif-
ferent predicates. Second, it should be probabilis-
tic, to handle the uncertainty inherent in transfer
in a principled way. Lastly, it should be able to
express knowledge in a domain-independent man-
ner to allow for transfer between domains
described by different predicates and types. To
meet these requirements, we have developed an
approach, called deep transfer via Markov logic
(DTM), based on a form of second-order Markov
logic (Kok and Domingos 2007). It can be viewed
as a way to automatically discover important struc-
tural regularities in one domain and apply them in
another (Davis and Domingos 2009).

Markov logic unifies first-order logic and proba-
bility. It softens a logical knowledge base by asso-
ciating a weight with each formula. Worlds that
violate formulas become less likely, but not impos-
sible. The logical formulas capture regularities that
hold in the data for a given domain. However, the
knowledge that the formulas encode is specific to
the types of objects and predicates present in that
domain. Deep
transfer attempts to generalize learned knowledge
across domains that have different types of objects
and predicates. In order to abstract away the
superficial domain description, DTM uses second-
order Markov logic, where formulas contain pred-
icate variables (Kok and Domingos 2007) to model
common structures among first-order formulas. To
illustrate the intuition behind DTM, consider the
formulas Complex(z, y) A SameFunction(x, z) = Com-
plex(x, y) and Location(z, y) A Interacts(x, z) = Loca-
tion(x, y) from a molecular biology domain. Both
are instantiations of r(z, y) A s(x, z) = r(x, y), where
r and s are predicate variables. Introducing predi-
cate variables allows DTM to represent high-level
structural regularities in a domain-independent
fashion. This knowledge can be transferred to
another problem, where the formulas are instanti-
ated with the appropriate predicate names.

DTM works with any learner than induces for-
mulas in first-order logic. Given a set of first-order
formulas, DTM converts each formula into second-
order logic by replacing all predicate names with
predicate variables. It then groups the second-
order formulas into cliques. Two second-order for-
mulas are assigned to the same clique if and only
if they are over the same set of literals. It is prefer-
able to use second-order cliques as opposed to arbi-
trary second-order formulas because multiple dif-
ferent formulas over the same predicates can
capture the same regularity. A clique groups for-
mulas with related effects into one structure. DTM
evaluates which second-order cliques represent
regularities whose probability deviates significant-
ly from independence among their subcliques. It
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selects the top k highest-scoring second-order
cliques to transfer to the target domain. Finally, the
highest-scoring cliques are transferred to the target
domain where they guide the structure learner to
fruitful parts of the search space.

We have applied DTM to transferring learned
knowledge among molecular biology, web, and
social network domains. Across a variety of trans-
fer conditions, we found that DTM led to more
accurate learned models in the target domain com-
pared to learning from scratch. In addition to
improved empirical performance, DTM discovered
patterns that include broadly useful properties of
predicates, like symmetry and transitivity, and
relations among predicates, such as various forms
of homophily.

Despite its promise, deep transfer remains an
underexplored area of research within the artificial
intelligence community. From a practical stand-
point, the ability to exploit previously acquired
data and knowledge can both lead to more accu-
rate learned models and help mitigate the need to
collect large amounts of labeled data for each new
task. From a cognitive perspective, transfer can
help bring a learning system’s capabilities closer to
those of humans. Going forward, many crucial
research questions must be addressed, including:
investigating new structure learning algorithms,
deciding the best source domain to transfer from
for a given target domain, performing a theoretical
analysis of deep transfer, and studying transferring
from multiple domains at once. One direction that
we find particularly exciting is pursuing approach-
es that discover regularities beyond simple proper-
ties like transitivity. For example, networks have
many different structural properties that can be
discovered and transferred: rings, hierarchies,
cliques, chains, and so on (Kemp, Goodman, and
Tenenbaum 2008; Kemp and Tenenbaum 2008).
Furthermore, causal relationships are another
important type of structure that we would like to
uncover. This would allow us to learn a theory of
causality in one domain and apply it in others. In
fact, Goodman, Ullman, and Tenenbaum (2009)
have hypothesized that this is what infants do.
Detecting these types of structures may require
new approaches to deep transfer. Deep transfer
promises to be a source of fascinating problems
and significant advances for machine learning for
years to come.
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