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Path planning is central to many real-world applications
since many fundamental problems in computer science
can be modeled as path-planning problems (LaValle

2006). In robotics and video games, (continuous) terrain is
often discretized into grids with blocked and unblocked grid
cells and from there into grid graphs (Tozour 2004; Rabin
2000; Chrpa and Komenda 2011; Björnsson et al. 2003; Nash
2012). Our objective is to find short unblocked paths from
given start vertices to given goal vertices. All path-planning
algorithms trade off differently with respect to their memory
consumption, the run times of their searches and the lengths
of the resulting paths. We are interested only in their run
times and path lengths since grids typically fit into memory.
We discuss only path-planning algorithms that are correct
(that is, if they find a path from the start vertex to the goal
vertex, it is unblocked) and complete (that is, if there exists
an unblocked path from the start vertex to the goal vertex,
they find one) but not guaranteed to be optimal (that is, not
guaranteed to find a shortest unblocked path from the start
vertex to the goal vertex), unless stated otherwise. For exam-
ple, the heuristic path-planning algorithm A* (Hart, Nilsson,
and Raphael 1968) finds shortest grid paths on grids (that is,
shortest paths constrained to grid edges). However, shortest
grid paths can be unnatural looking and longer than shortest
paths because their heading changes are artificially con-
strained to specific angles, which can result in heading
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changes in free space (that is, terrain away from
blocked grid cells). Smoothing shortest grid paths
(that is, removing unnecessary heading changes from
them) after the search typically shortens the paths
but does not change the path topologies (that is, the
manner in which they circumnavigate blocked grid
cells). In this overview article, we discuss a path-plan-
ning methodology for quickly finding paths that are
typically shorter than shortest grid paths. Any-angle
path-planning algorithms are variants of A* that
interleave the A* search and the smoothing. They
propagate information along grid edges (like A*, to
be fast) without constraining the resulting paths to
grid edges (unlike A*, to find short paths). The fact
that the heading changes on their paths are not arti-
ficially constrained to specific angles explains their
name, which was coined by Nash et al. (2007). We
first analyze how much longer shortest grid paths can
be than shortest paths and then discuss any-angle
path-planning algorithms in known two-dimension-
al (2D), known three-dimensional (3D), and
unknown two-dimensional terrain.

Assumptions
We use video games as the primary motivating appli-
cation although any-angle path planning (in the
form of Field D*) has also been used on mobile
robots, including the Mars rovers Spirit, Opportunity,
and Curiosity (Carsten et al. 2009).1 We assume that
the terrain is a grid with grid cells that are either com-
pletely blocked (gray) or unblocked (white). Thus,
there is no discretization bias (or, synonymously, dig-
itization bias).2 Vertices are placed at either the cor-
ners or centers of grid cells. Grid edges connect all
pairs of visible neighbors with straight lines, where
two vertices are visible from each other if and only if
the straight line from one vertex to the other vertex
does not traverse the interior of any blocked grid cell
and does not pass between blocked grid cells that
share a side.3 Figure 1 shows a path-planning exam-
ple that we use throughout this article. Its terrain is
discretized into a 2D 8-neighbor square grid with ver-
tices placed at the corners of grid cells. The start ver-
tex is A4, and the goal vertex is C1. Figure 2a shows
a shortest grid path and figure 2b shows a shortest
path. The unnecessary heading change in free space
on the shortest grid path results in an unnatural-
looking trajectory for agents such as robots and game
characters and makes the shortest grid path longer
than the shortest path.

Path-Length Analysis
We now sketch an analysis that determines how
much longer shortest grid paths can be than shortest
paths (with the same end points) (Nash 2012). It is
more general than previous analyses (Nagy 2003, Fer-
guson and Stentz 2006) because it allows grid cells to
be blocked and applies to different types of grids. We
differentiate among several types of (unblocked)
paths, namely grid paths (that is, paths formed by
line segments whose end points are visible neigh-
bors), vertex paths (that is, paths formed by line seg-
ments whose end points are visible vertices) and
paths (that is, paths formed by line segments whose
end points are either visible vertices or nonvertex
locations). Shortest paths are no longer than shortest
vertex paths, per definition of vertex paths (since
they are paths). Shortest vertex paths are no longer
than shortest grid paths, per definition of grid paths
(since they are vertex paths). The analysis proceeds in
two steps.

First, for every line segment of a shortest vertex
path, one shows that the ratio of the lengths of any
shortest grid path with the same end points as the
line segment and the line segment itself is not affect-
ed by which grid cells are blocked. This is done by
showing that a shortest grid path exists that travers-
es only the interior of those grid cells that the line
segment traverses as well. Since these grid cells can-
not be blocked, the analysis does not depend on
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Figure 1. Path-Planning Example.

(a) 2D Terrain. (b) Corresponding 2D Grid (Daniel et al. 2010).



which grid cells are blocked. Figure 3a illustrates this
property with a path-planning example where the
terrain is discretized into a 2D 8-neighbor square grid
with vertices placed at the corners of grid cells. The
start vertex is G1, and the goal vertex is A15.

Second, for all possible end points of a line seg-
ment, one maximizes the worst-case ratio of the
lengths of any shortest grid path with the same end
points as the line segment and the line segment itself.
This can be done by solving an optimization prob-
lem with Lagrange multipliers.

This analysis provides upper bounds on the worst-
case ratios of the lengths of shortest grid paths and
shortest vertex paths (that is, the ratio has at most
this value for every path-planning problem). These
bounds are either tight (that is, attainable in the
sense that there exists a path-planning problem for
which the ratio has this value) or asymptotically
tight (that is, attainable in the limit as the lengths of
the shortest grid paths increase). Shortest vertex
paths are of the same lengths as shortest paths on 2D
grids with vertices placed at the corners of grid cells
(figure 2b), due to our simplifying assumption that
grid cells are either completely blocked or unblocked.
In this case, the analysis applies unchanged to the
worst-case ratios of the lengths of shortest grid paths
and shortest paths. Otherwise, the analysis provides
approximate lower bounds on these worst-case ratios
(that is, there exists a path-planning problem for
which the ratio has approximately at least this value)
because shortest paths can then be shorter than
shortest vertex paths. In 2D and 3D, shortest paths
can be shorter than shortest vertex paths if vertices
are placed at the centers of grid cells (the shortest ver-
tex paths then have heading changes in free space
rather than grid cell corners). In 3D, shortest paths
can be shorter than shortest vertex paths because the
shortest paths can contain heading changes at either
the corners or sides of blocked grid cells (we explain
this more clearly in the Known 3D Terrain section).
Finally, in both 2D and 3D, shortest paths can be
shorter than shortest vertex paths if grid cells are not
guaranteed to be completely blocked or unblocked.

Only three types of regular (equilateral and equian-
gular) polygons tessellate 2D terrain, namely trian-
gles (resulting in triangular grids), squares (resulting
in square grids), and hexagons (resulting in hexago-
nal grids) (figure 4a). Table 1 shows results for 2D 3-
neighbor (solid red* arrows in figure 4a) and 2D 6-
neighbor (solid red and dashed green arrows in figure
4a) triangular grids with vertices placed at the corners
of grid cells, 2D 4-neighbor (solid red arrows) and 2D
8-neighbor (solid red and dashed green arrows)
square grids with vertices placed at the corners of grid
cells (the 8-neighbor variant of which is, for exam-

ple, used by robots [Carsten et al. 2009] and the
video game Company of Heroes by Relic Entertain-
ment) and 2D 6-neighbor (solid red arrows) and 2D
12-neighbor (solid red and dashed green arrows)
hexagonal grids with vertices placed at the centers of
grid cells (the 6-neighbor variant of which is, for
example, used by robots [Chrpa and Komenda 2011]
and the video game Sid Meier’s Civilization V by Firax-
is Games). Only one type of regular polyhedron tes-
sellates 3D terrain, namely cubes (resulting in cubic
grids) (figure 4b). Table 1 shows results for 3D 6-
neighbor (solid red arrows in figure 4b) and 3D 26-
neighbor (solid red and dashed green arrows in figure
4b) cubic grids with vertices placed at the corners of
grid cells.

Most percentages listed in the table are approxi-
mate because the actual percentages are irrational.
For example, shortest grid paths on 2D 8-neighbor
square grids with vertices placed at the corners of
grid cells can be at least a factor of

(that is, approximately 8 percent) longer than short-
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Figure 2. Shortest Grid Path (a) and Shortest Path (b).

(Daniel et al. 2010)

*In the print version, blue, red, and green are shades of gray.



est paths (but not more), while shortest grid paths on
3D 26-neighbor cubic grids with vertices placed at
the corners of grid cells can be at least a factor of

(that is, approximately 13 percent) longer than short-
est paths. These results suggest that it might be nec-

9!2 2!2 2 3 "1.13

essary to find shorter paths than shortest grid paths.
In case the reader feels that these percentages are
insignificant, it is important to understand that on
nongrid terrain discretizations (figure 9) the worst-
case ratios of the lengths of shortest “grid” paths and
shortest paths can be larger.

We use 2D 8-neighbor square grids and 3D 26-
neighbor cubic grids throughout the remainder of this
article, both with vertices placed at the corners of grid
cells. These cases allow us to generalize from 2D to 3D
terrain, and their bounds on the worst-case ratios of
the lengths of shortest grid paths and shortest paths
are sufficiently small to make path planning on grids
a strong competitor of any-angle path planning.

A*
All path-planning algorithms that we discuss are
based on the heuristic path-planning algorithm A*
(Hart, Nilsson, and Raphael 1968), which is probably
the most popular path-planning algorithm in artifi-
cial intelligence and widely used in robotics and
video games. Figure 5a shows the pseudocode of A*.4

For the description of A*, we assume that all paths are
constrained to the edges of the graph given by the
neighbor relationship of vertices. To focus its search,
A* requires a user-provided h-value (or, synonymous-
ly, heuristic value) h(s) for every vertex s that is an
estimate of the goal distance of s (that is, the length
of a shortest path from s to the goal vertex). The h-
values are required to be consistent (that is, satisfy
the triangle inequality) for our version of the
pseudocode and, as a consequence, are admissible
(that is, do not overestimate the goal distances of the
vertices). A* maintains two values for every vertex s:
(1) Its g-value g(s) is an estimate of the start distance
of s (that is, the length of a shortest path from the
start vertex to s), namely the length of the shortest
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2D triangular grid with 
vertices at corners 

3-neighbor = 
100% 

tight tight 

  6-neighbor ≈ 15% tight tight 

 square grid with vertices 
at corners 

4-neighbor ≈ 41% tight tight 

  8-neighbor ≈ 8% asymptotically tight asymptotically tight 

 hexagonal grid with 
vertices at centers 

6-neighbor ≈ 15% tight lower bound 

  12-
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≈ 4% asymptotically tight approximate lower 
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3D cubic grid with vertices 
at corners 

6-neighbor ≈ 73% tight lower bound 

  26-
neighbor 

≈ 13% asymptotically tight  approximate lower 
bound 

Figure 3. Shortest Grid Paths with Different Path Topologies

(Nash 2012)

Table 1. Path-Length Analysis of Shortest Grid Paths.

(Nash 2012).



path from the start vertex to s that it has found so far.
A* uses its g-value to calculate its f-value f(s) = g(s) +
h(s), which is an estimate of the length of a shortest
path from the start vertex through s to the goal ver-
tex. (2) Its parent parent(s) is used to extract the
resulting path after the A* search terminates. A* also
maintains two global data structures: (1) The open
list open is a priority queue that contains the vertices
that A* considers to expand with their f-values as
their keys. (2) The closed list closed is a set that con-
tains the vertices that A* has already expanded and
thus can be used to ensure that all vertices are
expanded at most once. A* expands all vertices at
most once and thus does not depend on the closed
list if the h-values are consistent (Pearl 1985) since
the f-values of all vertices along all branches of its
search trees are then nondecreasing. However, any-
angle path-planning algorithms typically do not
have this property and thus rely on the closed list to
prevent them from expanding vertices multiple
times.

A* sets the g-value of every vertex to infinity and
the parent of every vertex to NULL when it encoun-
ters the vertex for the first time (lines 14–15). It sets
the g-value of the start vertex to zero and the parent
of the start vertex to the start vertex (lines 3–4). It sets
the open and closed lists to the empty list and then
inserts the start vertex into the open list with its f-
value as its key (lines 2 and 5). A* then repeatedly
executes the following procedure: If the open list is
empty, then A* reports that there exists no path (line
17). Otherwise, it removes a vertex s with the small-
est f-value from the open list (line 7). (It typically
breaks ties among vertices with the same f-value in
the open list in favor of vertices with larger g-values
since this often reduces the number of vertex expan-
sions and thus also the run time.) If this vertex is the
goal vertex, then A* reports that it has found a path
(line 9). Path extraction (not shown in the
pseudocode) follows the parents from the goal vertex
to the start vertex to retrieve a path from the start
vertex to the goal vertex in reverse, the length of
which is equal to the g-value of the goal vertex. Oth-
erwise, A* expands the vertex by inserting it into the
closed list (line 10) and generating each of its unex-
panded visible neighbors s, as follows: A* checks
whether g(s) + c(s, s) (where c(s, s) > 0 is the distance
from s to s) is smaller than g(s). If so, then it sets the
parent of sto s (line 30), sets g(s) to g(s) + c(s, s) (line
31) and finally inserts s into the open list with its f-
value as its key (line 25) or, if it was already in the
open list, sets its key to its f-value (lines 23–25). A*
then repeats this procedure.

To summarize, A* updates the g-value and parent
of each unexpanded visible neighbor s of the vertex
s that is currently being expanding as follows (in pro-
cedure ComputeCost): A* considers setting the par-
ent of s to s, resulting in a path of length g(s) + c(s,
s) from the start vertex to s and from there to sin a

straight line. A* updates the g-value and parent of s
if the length of this path is shorter than the length
g(s) of the shortest path from the start vertex to s
that it has found so far, namely the path that results
(in reverse) from following the parents from s to the
start vertex.

Known 2D Terrain
Many agents operate in known 2D terrain.

Conventional Path-Planning Algorithms
We first discuss how A* operates on grid graphs and
visibility graphs. The resulting trade-offs between the
run times of its searches and the lengths of the result-
ing paths are at opposite ends of the spectrum. We
then briefly discuss other conventional path-planing
algorithms.

A* on Grid Graphs
A* on grid graphs is fast since it propagates informa-
tion along grid edges, the number of which grows at
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most linearly in the number of grid cells (or vertices).
It also finds shortest grid paths if the h-values are
consistent, is simple, and applies to every graph
embedded in 2D or 3D terrain. Therefore, it is not
surprising that A* on grid graphs is popular (Björns-
son et al. 2003; Yap 2002). For example, the game
characters in the video games Warcraft II: Tides of
Darkness by Blizzard Entertainment and Climax Stu-
dios and Starcraft by Blizzard Entertainment and
Mass Media seem to move on the grid edges of 2D 8-
neighbor square grids.

Figure 6 shows A* on grid graphs in operation on
a 2D 8-neighbor square grid with vertices placed at
the corners of grid cells. The start vertex is A4, and
the goal vertex is C1. We use the straight line dis-
tances as h-values. Arrows point to the parents of ver-
tices. A red circle indicates the vertex that is current-
ly being expanded, and a blue arrow indicates a
vertex that is being generated during the current ver-

tex expansion. A* expands start vertex A4, followed
by B3 and C2. It terminates when it is about to
expand goal vertex C1. Path extraction then retrieves
the shortest grid path (A4, B3, C2, C1) from start ver-
tex A4 to goal vertex C1.

A* on grid graphs can find shortest paths. Howev-
er, this is not guaranteed, as shown in figure 6 where
the resulting path has an unnecessary heading
change in free space at C2 and is longer than the
shortest path (A4, B3, C1) from start vertex A4 to goal
vertex C1. We have explained how much longer
shortest grid paths can be than shortest paths in the
Path-Length Analysis section.

A* on Visibility Graphs
One constructs visibility graphs (Lee 1978, Lozano-
Pérez and Wesley 1979) as follows: The vertices are
placed at the convex corners of all obstacles and at
the locations of the start and goal vertices. Visibility
graph edges connect all pairs of visible vertices with
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straight lines. A* on visibility graphs finds shortest
paths in 2D terrain with polygonal obstacles (figure
7) (Lozano-Pérez and Wesley 1979). A shortest path
from the start vertex to the goal vertex is part of the
visibility graph and, since visibility graphs are a sub-
set of the set of all vertex paths in 2D terrain with ver-
tices placed at the corners of grid cells, also a vertex
path on 2D grids with vertices placed at the corners
of grid cells, which is the reason shortest vertex paths
are of the same lengths as shortest paths on 2D grids
with vertices placed at the corners of grid cells.

However, A* on visibility graphs also has disad-
vantages. It can be slow since it propagates informa-
tion along visibility graph edges, the number of
which can grow quadratically in the number of grid
cells, resulting in A* searches with large branching
factors and many visibility checks. Sophisticated vari-
ants of A* on visibility graphs (Liu and Arimoto 1992;
Mitchell and Papadimitriou 1991) can decrease the

number of visibility checks somewhat. Path-plan-
ning algorithms such as continuous Dijkstra and its
variants (Mitchell, Mount, and Papadimitriou 1987;
Hershberger and Suri 1999) as well as the recent
Anya (Harabor and Grastien 2013) (which requires
neither preprocessing nor large amounts of memo-
ry) also find shortest paths but have not yet been
thoroughly evaluated experimentally.

Probabilistic Path-Planning Algorithms
Probabilistic path-planning algorithms, such as
probabilistic roadmaps (Kavraki et al. 1996), or their
special case, rapidly exploring random trees (LaValle
and Kuffner 2001), discretize terrain by placing ver-
tices randomly in the terrain. Roadmap edges con-
nect some or all pairs of visible vertices with straight
lines. Probabilistic path-planning algorithms then
find paths on the resulting graphs with A* (or some
other conventional path-planning algorithm) or, in
case of trees, by reading them off directly. They are
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only probabilistically complete, can find paths that
have heading changes in free space, and can be slow
in the presence of narrow passages. Some researchers
now advocate a systematic (rather than random)
sampling of terrain to determine the locations of the
vertices to mitigate these shortcomings (Lindemann
and LaValle 2004).

Any-Angle Path-Planning Algorithms
We now discuss any-angle path-planning algorithms.
A* on grid graphs finds long paths but is fast, while
A* on visibility graphs finds short paths but is slow.
Any-angle path-planning algorithms try to combine
the best of both worlds. They are variants of A* that
find paths by propagating information along grid
edges (like A* on grid graphs, to be fast) without con-
straining the resulting paths to grid edges (like A* on
visibility graphs, to find short paths). They are typi-
cally not guaranteed to find shortest paths. The aster-
isk in their names thus does not denote their opti-
mality but rather their similarity to A*. Any-angle
path-planning algorithms should aim for the follow-
ing three properties: efficiency, simplicity, and gener-
ality.

Efficiency: Any-angle path-planning algorithms
should be faster than A* on visibility graphs and find
shorter paths than A* on grid graphs (figure 8). Dif-
ferent any-angle path-planning algorithms trade off
differently between the run times of their searches
and the lengths of the resulting paths. We do not pro-
vide a comprehensive quantitative analysis of this
trade-off since comprehensive experimental compar-
isons are currently missing from the literature
although we broadly average over all reported results
to give the reader an approximate idea of the effi-
ciency of the different any-angle path-planning algo-
rithms. However, we encourage readers to examine
the literature themselves before drawing any conclu-
sions, due to the following issues: First, the experi-
mental setups (such as the type of grid, grid size,
placement of blocked grid cells, locations of start and
goal vertices, h-values, and tie-breaking rule for
selecting a vertex from those with the smallest f-val-
ue in the open list) can have large effects on the run
times of the searches and the lengths of the resulting
paths. Currently, there is no agreement on standard
experimental setups in the literature. Second, meas-
uring run times is especially difficult. Run-time prox-
ies, such as the number of vertex expansions, cannot
be used since different any-angle path-planning algo-
rithms perform different operations when expanding
a vertex and thus have different run times per vertex
expansion. Furthermore, they typically operate on
path-planning problems that fit into memory and are
thus small. Therefore, big-O analyses are not mean-
ingful, and implementation choices (such as data
structures and coding details) can have large effects
on the run times. It is currently unclear how to
address these issues best.

Simplicity: Any-angle path-planning algorithms
should be simple to understand, implement, debug,
and extend.

Generality: Any-angle path-planning algorithms
should apply to every graph embedded in 2D or 3D
terrain, independent of the terrain discretization
technique used. Generality is important because dif-
ferent video games use different terrain discretization
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techniques (figure 9).5, 6 For example, the video
games Company of Heroes by Relic Entertainment and
Sid Meier’s Civilization V by Firaxis Games use regular
grids. The video games Halo 2 by Bungie Studios,
Counter-Strike: Source by Valve Corporation, and
Metroid Prime by Retro Studios and Nintendo use nav-
igation meshes (that is, tessellations of terrain into n-
sided convex polygons). Finally, the video game
MechWarrior 4: Vengeance by FASA Interactive uses cir-
cle-based waypoint graphs (that is, graphs with cir-
cles around vertices that indicate free space).

A* with Postsmoothing
A simple any-angle path-planning algorithm can be
obtained as follows: one first executes A* on grid
graphs and then uses simple postprocessing tech-
niques to smooth (that is, remove unnecessary head-
ing changes) and thus shorten the path (at the
expense of being slower). Smoothing has to be fast.
There exist many ways to do that (Thorpe 1984;
Botea, Müller, and Schaeffer 2004; Millington and
Funge 2009). For example, A* with postsmoothing
first runs A* on grid graphs to find a shortest grid
path and then smooths this grid path in a postpro-
cessing step by repeatedly removing a vertex from
the path that lies between two visible vertices on the
path. This cannot make the path longer due to the
triangle inequality.

Figure 10 shows A* with postsmoothing in opera-
tion on a 2D 8-neighbor square grid with vertices
placed at the corners of grid cells. The start vertex is
A4, and the goal vertex is C1. It runs A* on grid
graphs to find the shortest grid path (A4, B3, C2, C1).
It removes B2 in the postprocessing step, then unsuc-
cessfully tries to remove B3 and then terminates.
Path extraction then retrieves the shortest path (A4,
B3, C1) from start vertex A4 to goal vertex C1.
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A* with postsmoothing typically finds shorter
paths than A* on grid graphs and can find shortest
paths (figure 10). However, this is not guaranteed.
Since its A* search considers only grid paths, it can-
not make informed decisions regarding other paths
(Daniel et al. 2010; Ferguson and Stentz 2006).
Smoothing typically leaves the topologies of the
paths unchanged and is thus not guaranteed to find
shortest paths. For example, the postprocessing step
of A* with postsmoothing does not smooth the short-
est grid path in figure 3b at all but smooths the short-
est grid path in figure 3a to the shortest path. How-
ever, the A* search of A* with postsmoothing has no
bias for one or the other and could thus find either
shortest grid path. This suggests that one might want
to (either perform the smoothing before the A*
search or) interleave the smoothing with the A*
search because the A* search then considers more
than just grid paths during the search.

There exist many ways of interleaving the A*
search with the smoothing. We discuss three of them
in this article, resulting in different any-angle path-
planning algorithms, namely Block A*, Field D*, and
Theta*. They trade off differently between the run
times of their searches and the lengths of the result-
ing paths. Block A* uses a lookup table with precom-
puted short paths within given sets of grid cells. Field
D* uses interpolation between the g-values of vertices
to calculate the g-values of nonvertex locations,
which allows it to set the parent of a vertex to any
vertex or nonvertex location on the straight line
between the neighbors of the vertex. Finally, Theta*
checks for shortcuts during the expansion of a vertex
by checking whether it can set the parent of each
unexpanded visible neighbor of the vertex that is cur-
rently being expanded to the parent of the expanded

(a) (b) (c)

Figure 9. Terrain Discretizations.

(a) Regular grids. (b) Navigation meshes. (c) Circle-based waypoint graphs. (Nash 2012).



vertex rather than the expanded vertex itself. We
describe Theta* in more detail than the other any-
angle path-planning algorithms simply because we,
as the developers, are very familiar with it. There like-
ly exist additional any-angle path-planning algo-
rithms, both new ones that still need to be discov-
ered and existing ones that still need to be
characterized as any-angle path-planning algorithms.

Block A*
Block A* (Yap et al. 2011a; 2011b) performs the
smoothing before the A* search by using a lookup
table with (the lengths of) precomputed short paths
within given sets of grid cells. It partitions a 2D
square grid into blocks of equal block size, uses an A*
search that expands blocks rather than vertices (by
putting blocks onto the open list) and, for every
block, precomputes paths from every fringe vertex of
the block (that is, every vertex along the border of
the block) to every other fringe vertex of the block
and stores (them and) their lengths in a lookup table

to speed up the A* search. These paths can be short-
est grid paths, shortest paths, or any other paths.
Block A* becomes an any-angle path-planning algo-
rithm if the paths are precomputed with an any-
angle path-planning algorithm.

Figure 11 shows Block A* in operation on a 2D
square grid with vertices placed at the corners of grid
cells, which is partitioned into six 5 x 5 blocks. The
lookup table contains (the lengths of) shortest paths.
The start vertex is L4, and the goal vertex is D4. The
h-values are straight line distances. When Block A*
expands the start block K1-K6-P6-P1 (that is, the
block that contains start vertex L4), it basically sets
the g-value of each fringe vertex s of the start block to
the length of a shortest path from start vertex L4 to s
within the start block. It then generates each of the
neighboring blocks of the start block (that is, the
blocks that the start block shares at least one fringe
vertex with), namely blocks F1-F6-K6-K1, K6-K11-
P11-P6, and F6-F11-K11-K6, as follows: Block A* cal-
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culates the smallest f-value of all those fringe vertices
of the neighboring block whose g-values decreased or
were calculated for the first time. It inserts the neigh-
boring block into the open list with this value as its
key or, if it was already in the open list, sets its key to
this value provided this decreases the key. (Thus,
Block A* can reexpand blocks.) Block A* expands
block F1-F6-K6-K1 next since it is the block in the
open list with the smallest key. Block A* basically sets
the g-value of each fringe vertex s of block F1-F6-K6-
K1 to the minimum of the g-value of its fringe vertex
s plus the length of a shortest path from s to s with-
in block F1-F6-K6-K1 (which it retrieves from the
lookup table), minimized over all of its fringe vertices
s. It then generates each of the neighboring blocks of
block F1-F6-K6-K1 as before, and so on. Finally, path
extraction retrieves the shortest path (L4, L5, H5, H4,
J3, J2, F2, D4) from start vertex L4 to goal vertex D4
(figure 11).

Block A* is fast and could be extended to all types
of 2D grids but also has disadvantages: Block A* can
find shortest paths (figure 11). However, this is not
guaranteed. For example, its paths can have heading
changes in free space (namely, at fringe vertices) and
could thus be smoothed in a postprocessing step.
Block A* must be implemented with care because its
lookup table can consume a lot of memory if it is not
compressed. Finally, it can be difficult to determine
the block size that trades off best between the run
times of its searches and the lengths of the resulting
paths.

Field D*
Field D* (Ferguson and Stentz 2006) is a variant of D*
Lite (Koenig and Likhachev 2005, Stentz 1995) that
interleaves the smoothing with the A* search by
using interpolation between the g-values of vertices
to calculate the g-values of nonvertex locations,
which allows it to set the parent of a vertex to any
vertex or nonvertex location on the straight line
between the neighbors of the vertex.

The difference between Field D* and A* when they
update the g-value and parent of an (for Field D* not
necessarily) unexpanded visible neighbor s of the
vertex s that is currently being expanded, is the fol-
lowing: Field D* considers setting the parent of s to
any vertex or nonvertex location X on the perimeter
of s that is visible from s (where the perimeter is the
square formed by connecting the neighbors of s),
resulting in a path of length g(X) + c(X, s) from the
start vertex to X and from there to s in a straight
line. It updates the g-value and parent of s if the
length of the shortest such path is smaller than the
length g(s) of the shortest path from the start vertex
to s that it has found so far.

Figure 12 shows Field D* in operation on a 2D 8-
neighbor square grid with vertices placed at the cor-
ners of grid cells. The start vertex is C1. The perime-
ter of s = B4 is the red square with the thick border.
Consider nonvertex location X on the perimeter.

Field D* does not know the g-value of X since it
stores g-values only for vertices. It calculates the g-
value of X using linear interpolation between the g-
values of the two vertices on the perimeter that are
closest to X. Therefore, it linearly interpolates
between g(B3) = 2.41 and g(C3) = 2.00, resulting in
g(X) = 0.55 x 2.41 + 0.45 x 2.00 = 2.23 since 0.55 and
0.45 are the distances from X to B3 and C3, respec-
tively. The calculated g-value of X is different from
the length of a shortest path from the start vertex to
X, namely 2.55, even though the g-values of B3 and
C3 are both equal to the lengths of shortest paths
from the start vertex to them, respectively. The rea-
son for this mistake is that there exist shortest paths
from start vertex C1 through either C3 or B3 to B4.
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Therefore, linear interpolation predicts that there
must also exist a short path from start vertex C1
through every nonvertex location along the grid
edge that connects B3 and C3 to B4. However, this is
not the case since these paths have to circumnavigate
blocked grid cell B2-B3-C3-C2, which makes them
longer than expected. Field D* then finds the vertex
or nonvertex location X on the perimeter of B4 that
is visible from B4 and minimizes the length g(X) +
c(X, B4) of the path from start vertex C1 to X and
from there to B4 in a straight line. There exist infi-
nitely many vertex or nonvertex locations X on the
perimeter. However, the optimization problem can

be solved quickly since the vertex or nonvertex loca-
tions that minimize g(X) + c(X, B4) on each of the
eight grid edges that compose the perimeter of B4 can
be found using closed form optimization equations
(although the calculations require floating point
operations that make Field D* slow). One can modi-
fy Field D* so that it applies to types of graphs other
than 2D square grids, such as 2D triangular meshes,
by changing the optimization equations (Sapronov
and Lacaze 2008; Perkins et al. 2012).

Field D* has a disadvantage (figure 12). As a result
of miscalculating the g-value of X, Field D* sets the
parent of B4 to X, resulting in a path that has an
unnecessary heading change at X and is longer than
even a shortest grid path. Field D* uses a 1-step looka-
head postprocessing technique during path extrac-
tion after the search to avoid some of these heading
changes (Ferguson and Stentz 2006), such as the one
depicted in figure 12, but does not eliminate all of
them. The resulting paths typically have lots of small
heading changes in free space and could thus be
smoothed further in an additional postprocessing
step.7

Theta*
Theta* (Nash et al. 2007) interleaves the smoothing
with the A* search by checking for shortcuts during
the expansion of a vertex, namely whether it can set
the parent of each unexpanded visible neighbor of
the vertex that is currently being expanded to the
parent of the expanded vertex rather than the
expanded vertex itself. Figure 5b shows the
pseudocode of Theta* (the differences between the
pseudocode of A* and the pseudocode of Theta* are
highlighted in red, namely lines 28–32). The differ-
ence between Theta* and A* when they update the g-
value and parent of an unexpanded visible neighbor
s of the vertex s that is currently being expanded is
the following (in procedure ComputeCost): If the
parent of s is visible from s, then Theta* considers
setting the parent of s to the parent of s (lines 31–
32), resulting in a path of length g(parent(s)) + c(par-
ent(s), s) from the start vertex to the parent of s and
from there to s in a straight line (path 2), which does
not constrain the path to grid edges since the parent
of a vertex no longer has to be a neighbor of the ver-
tex. Otherwise, it considers setting the parent of s to
s (lines 36–37) (like A*), resulting in a path of length
g(s) + c(s, s) from the start vertex to s and from there
to s in a straight line (path 1). It updates the g-value
and parent of s if the length of the considered path
is smaller than the length g(s) of the shortest path
from the start vertex to s that it has found so far.
Overall, Theta* considers updating the g-value and
parent of s according to path 2 if the parent of s is
visible from s (that is, path 2 is unblocked) since path
2 is no longer than path 1 due to the triangle inequal-
ity.

Figure 13 shows Theta* in operation on a 2D 8-
neighbor square grid with vertices placed at the cor-
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ners of grid cells. The start vertex is A4, and the goal
vertex is C1. The h-values are straight line distances.
Theta* expands start vertex A4, followed by B3 and
B2. When Theta* expands B3 with parent A4, B2 is an
example of an unexpanded visible neighbor of B3
from which start vertex A4 is not visible. Theta* thus
updates B2 according to path 1 and sets its parent to
B3. On the other hand, C3 is an example of an unex-
panded visible neighbor of B3 from which start ver-
tex A4 is visible. Theta* thus updates it according to
path 2 and sets its parent to start vertex A4. Theta*
terminates when it is about to expand goal vertex C1.
Path extraction then retrieves the shortest path (A4,
B3, C1) from start vertex A4 to goal vertex C1.

Theta* can find shortest paths (figure 13). Howev-
er, this is not guaranteed since the parent of a vertex
can only be a visible neighbor of the vertex or the
parent of a visible neighbor, which is not always the
case for shortest paths. Figure 14 shows a path-plan-

ning example where the terrain is discretized into a
2D 8-neighbor square grid with vertices placed at the
corners of grid cells. Theta* finds shortest paths from
start vertex E1 to all possible goal vertices other than
C10. The visible neighbors of C10 are B10, B9, C9,
D9, and D10. Start vertex E1 is the parent of B10, B9,
D9, and D10 since it is visible from these vertices.
Either C7 or C8 is the parent of C9, depending on
how Theta* breaks ties when paths 1 and 2 are equal-
ly long. It is C7 for the pseudocode of Theta* in fig-
ure 5b. Therefore, B10, B9, C9, D9, D10, E1, and C7
are the only possible parents of C10. The vertex that
minimizes the length of a shortest path from start
vertex E1 through the vertex to C10 is C7, resulting
in the dashed red path (E1, C7, C10). This path is
longer than the shortest path (E1, D8, C10) but still
within 0.2 percent of the length of the shortest path.

There exist several variants of Theta* that result in
other trade-offs between the run times of their
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searches and the lengths of the resulting paths (figure
15) in addition to applying it to grids with different
numbers of neighbors (such as to 4-neighbor instead
of 8-neighbor square grids). We mention the variants
in shaded boxes only briefly.

On the one hand, Theta* has run times per vertex
expansion that can be linear in the number of grid
cells due to the visibility checks. On the other hand,
Angle-Propagation Theta* (Nash et al. 2007) achieves
run times per vertex expansion that are, in the worst
case, only constant in the number of grid cells by
propagating not only g-values and parents but also
angle ranges along grid edges. However, Angle-Prop-
agation Theta* currently applies only to 2D 8-neigh-
bor square grids with vertices placed at the corners of
grid cells and is more involved, experimentally not
as fast, and finds slightly longer paths than Theta*.

There exist variants of Theta* that find shorter
paths (at the expense of being slower), typically by
using strategies that A* cannot use.

Theta* might be able to find shorter paths by reex-
panding vertices or expanding additional vertices. A*
expands vertices at most once if the h-values are con-
sistent, while Theta* maintains the closed list to pre-
vent it from expanding vertices multiple times. How-
ever, there exist variants of Theta* that do not
maintain a closed list and thus can reexpand vertices
whose f-values have decreased (Daniel et al. 2010).
There also exist variants of Theta* that expand more
vertices by breaking ties among vertices with the
same f-value in the open list in favor of vertices with
smaller g-values or by calculating the f-values (like
Weighted A* [Pohl 1973]) as f(s) = g(s) + w × h(s),
where (unlike Weighted A*) 0 < w < 1 (sic!) is a user-
given constant, because this typically focuses the
search less and increases the number of vertex expan-
sions (Daniel et al. 2010).

Theta* might also be able to find shorter paths by
examining more paths. There exist variants of Theta
that consider setting the parent of an unexpanded
visible neighbor of the vertex currently being
expanded to additional vertices other than the vertex
and its parent, such as the parent of its parent (path
3) or cached vertices encountered earlier during the
search (Key Vertices) (Daniel et al. 2010).

There exist variants of Theta* that apply to grids
whose grid cells have nonuniform traversal costs
(Daniel et al. 2010; Choi and Yu 2011), in which case
shortest paths on 2D grids with vertices placed at the
corners of grid cells can have heading changes at the
borders of grid cells with different traversal costs but
never at the borders of grid cells with identical tra-
versal costs other than at vertices. In particular,
Theta*-T (Daniel et al. 2010) (which was so far
unnamed) does not produce heading changes at the
borders of grid cells other than at vertices. Field D*,
on the other hand, applies unchanged to grids whose
grid cells have nonuniform traversal costs since it was
designed for this case. It can produce heading
changes at the borders of grid cells with different tra-
versal costs but also at the borders of grid cells with
identical traversal costs.

Finally, Accelerated A* (Sislak, Volf, and Pechoucek
2009a; 2009b) can be understood as a variant of
Theta* with two innovations. First, Accelerated A*
uses an adaptive step size to determine the neighbors
of a vertex s. When s is far away from blocked grid
cells, Accelerated A* chooses vertices as neighbors of
s that are further away from s than when s is close to
blocked grid cells. On 2D square grids with vertices
placed at the corners of grid cells, it uses a maximum
unblocked square to determine the neighbors of s,
which it constructs by expanding a square centered
on s until one side of the square touches either the
goal vertex or a blocked grid cell. It then chooses the
neighbors of vertex s from the vertices on the sides of
the maximum unblocked square, such as the four
vertices that are in the middle of the four sides. Sec-
ond, Accelerated A* basically considers setting the
parent of an unexpanded visible neighbor of the ver-
tex that is currently being expanded to additional
vertices other than the vertex and its parent, namely
all expanded vertices, and uses a sufficiently large
ellipse to prune those expanded vertices that cannot
possibly be chosen as the parent. Accelerated A* con-
siders setting the parent of an unexpanded visible
neighbor of the vertex that is currently being expand-
ed to all expanded vertices within this ellipse.

Experimental Comparisons
Yap et al. (Yap et al. 2011b) compared Block A* whose
lookup table stores the (lengths of the) shortest paths,
A* on grid graphs, and Theta* on known 2D game
maps and known 2D square grids with randomly
blocked grid cells (see also Yap et al. [2011a]). A* on
grid graphs and Theta* were approximately 2.6 and
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7.5 times slower than Block A*, respectively. The
paths of A* on grid graphs and Theta* were approxi-
mately 4.2 percent longer and less than 1 percent
shorter than those of Block A*, respectively.

Nash (2012) compared A* on grid graphs, Theta*,
Field D*, A* with postsmoothing, and A* on visibili-
ty graphs on known 2D game maps and known 2D
square grids with randomly blocked grid cells; see
also Daniel et al. (2010). Theta*, Field D*, A* with
postsmoothing, and A* on visibility graphs were
approximately 3.2, 8.6, 10.6, and 118.6 times slower
than A* on grid graphs, respectively. The paths of
Theta*, Field D*, A* with postsmoothing, and A* on
visibility graphs were approximately 4.6, 4.4, 3.9, and
4.7 percent shorter than those of A* on grid graphs,
respectively.

Sislak, Volf, and Pechoucek (2009b) compared
Theta*, Accelerated A*, and A* on visibility graphs on
known 2D square grids with randomly blocked grid
cells and arranged blocked grid cells to simulate path-
planning problems from robotics. Accelerated A* and
A* on visibility graphs were approximately 1.7 and
1630.0 times slower than Theta*, respectively. The
paths of Accelerated A* and A* on visibility graphs
were approximately 1.0 percent shorter than those of
Theta*. Accelerated A* always found shortest paths
although no theoretical argument was made that it is
optimal.

Known 3D Terrain
Agents operate not only in known 2D terrain but
also in known 3D terrain, such as in the video game
James Cameron’s Avatar: The Game by Ubisoft Mon-
treal. Path planning in known 3D terrain can be
more difficult than in known 2D terrain. For exam-
ple, A* on grid graphs can find grid paths that are at
most approximately 8 percent longer than shortest
paths on 2D 8-neighbor square grids with vertices
placed at the corners of grid cells rather than at least
approximately 13 percent longer than shortest paths
on 3D 26-neighbor cubic grids with vertices placed at
the corners of grid cells, as explained in the Path-
Length Analysis section. A* on visibility graphs finds
shortest paths in 2D terrain with polygonal obstacles
but is not guaranteed to find shortest paths in 3D ter-
rain with polyhedral obstacles (Choset et al. 2005),
as shown in figure 16a where the heading changes of
the only shortest path from the start vertex to the
goal vertex are not at the corners of the polyhedral
obstacle. Figure 16b demonstrates that this property
also holds for 3D grids by showing a path-planning
example where the terrain is discretized into a 3D 26-
neighbor cubic grid with vertices placed at the cor-
ners of grid cells. The start vertex is B2L, and the goal
vertex is A3U. The dashed red path (B2L, B2U, A3U)
is the shortest vertex path and a solid blue path is the
shortest path. Thus, it is neither guaranteed that a
shortest path from the start vertex to the goal vertex
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is part of the visibility graph nor that it is a vertex
path on 3D grids (even with vertices placed at the
corners of grid cells). Shortest vertex paths can thus
be longer than shortest paths on 3D grids. In fact,
shortest paths in 2D terrain with polygonal obstacles
can be found in polynomial time, while finding
shortest paths in 3D terrain with polyhedral obsta-
cles is NP-hard (Canny and Reif 1987). One can mod-
ify Field D* so that it applies to 3D cubic grids and 3D
tetrahedral meshes rather than 2D square grids and
2D triangular meshes by changing the optimization
equations (Carsten, Ferguson, and Stentz 2006;
Sapronov and Lacaze 2008; Perkins et al. 2012). The
resulting variants of Field D* are more involved than
Field D* and typically use additional approximations.
For example, the optimization equations for 2D
square grids (where the perimeter consists of edges)
can be solved in closed form but the ones for 3D
cubic grids (where the perimeter consists of faces)
cannot. Block A* could be extended without prob-
lems to all types of 3D grids although its lookup table
can consume much more memory for 3D grids than
2D grids.

Theta* applies unchanged to every graph embed-

ded in 2D or 3D terrain. However, it performs one vis-
ibility check per generated vertex (namely, one visi-
bility check for every unexpanded visible neighbor of
the vertex that is currently being expanded). The
number of visibility checks thus increases with the
number of neighbors (even if the pseudocode of
Theta* in figure 5b is optimized to perform a visibili-
ty check only if the length g(parent(s)) + c(parent(s), s)
of path 2 is smaller than the length g(s) of the short-
est path from the start vertex to s that Theta* has
found so far). Figure 17a shows a path-planning
example where the terrain is discretized into a 2D 8-
neighbor square grid with vertices placed at the cor-
ners of grid cells. The start vertex is C1, and the goal
vertex is A4. Theta* performs 3 + 6 + 6 = 15 visibility
checks on line 28. (The visible neighbors on line 11
can be determined without visibility checks.) Figure
17b shows a similar path-planning example where
the terrain is discretized into a 3D 26-neighbor cubic
grid with vertices placed at the corners of grid cells.
The start vertex is C1L, and the goal vertex is A4U.
Theta* now performs many more than 15 visibility
checks, namely 7 + 15 + 15 = 37 visibility checks. The
run times per vertex expansion of Theta* can be lin-
ear in the number of grid cells due to the visibility
checks, even though visibility checks on 2D square
grids and 3D cubic grids can be performed with fast
line-drawing algorithms from computer graphics
(Daniel et al. 2010), such as the standard Bresenham
line-drawing algorithm (Bresenham 1965), and be
optimized further for the task (Choi, Lee, and Yu
2010). Visibility checks on other types of graphs,
such as navigation meshes, can be slower. It is thus
important to decrease the number of visibility checks
per vertex expansion in 3D terrain.

Lazy Theta* (Nash, Koenig, and Tovey 2010) is a
variant of Theta* that can speed up Theta* both when
it generates many more vertices than it expands and
when its visibility checks are slow. It uses lazy evalu-
ation to perform only one visibility check per
expanded vertex instead of one visibility check per
generated vertex but increases the number of vertex
expansions and potentially the length of the result-
ing path. There exist several variants of Lazy Theta*.
For example, the main variant of Lazy Theta* delays
visibility checks by optimistically assuming that the
parent of the vertex that is currently being expanded
is visible from every unexpanded visible neighbor of
the expanded vertex, while Lazy Theta*-P (Nash,
Koenig, and Tovey 2010) delays visibility checks by
pessimistically assuming that the parent is not visi-
ble. We describe the main variant. Due to its opti-
mistic assumption, Lazy Theta* can update the g-val-
ue and parent of an unexpanded visible neighbor of
the expanded vertex according to path 2 even if the
parent of the expanded vertex is not visible from the
neighbor. It revisits this assumption when it expands
the neighbor and, if it does not hold, corrects the g-
value and parent of the neighbor. Figure 5c shows the
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pseudocode of Lazy Theta* (the differences between
the pseudocode of Theta* and the pseudocode of
Lazy Theta* are highlighted in red, namely line 8 and
lines 34–39). The difference between Lazy Theta* and
Theta* when they update the g-value and parent of
an unexpanded visible neighbor s of the vertex s that
is currently being expanded is the following (in pro-
cedure ComputeCost): Without checking whether
the parent of s is visible from s, Lazy Theta* consid-
ers setting the parent of sto the parent of s (lines 31–
32), resulting in a (potentially blocked) path of
length g(parent(s)) + c(parent(s), s) from the start ver-
tex to the parent of s and from there to s in a straight
line (path 2). It updates the g-value and parent of s if
the length of this path is smaller than the length g(s)
of the shortest path from the start vertex to s that it
has found so far. Lazy Theta* performs one visibility
check (in procedure SetVertex) immediately before it
expands vertex s. If the new parent of s is visible
from s, then Lazy Theta* does not change the g-val-
ue and parent of s. Otherwise, Lazy Theta* updates
the g-value and parent of s according to path 1 by
setting the parent of s to the expanded visible neigh-
bor s of s that minimizes the length g(s) + c(s, s)
of the path from the start vertex to s and from there
to s in a straight line (lines 37–38). (This path is well-
defined and of finite length since s is an expanded
visible neighbor of s.) Lazy Theta*-R (Nash, Koenig,
and Tovey 2010) is a variant of Lazy Theta* that, at
this point, reinserts s into the open list with an
updated key instead of expanding it. This gives Lazy
Theta*-R an opportunity to discover shorter paths
from the start vertex to s before it expands s.

Lazy Theta* applies to all graphs that Theta*
applies to. For example, it applies not only to 3D but
also to 2D terrain. We explain Lazy Theta* on 2D 8-
neighbor square grids because they are easier to visu-
alize than 3D 26-neighbor cubic grids. Therefore, fig-
ure 18 shows Lazy Theta* in operation on a 2D
8-neighbor square grid with vertices placed at the
corners of grid cells. The start vertex is A4, and the
goal vertex is C1. The h-values are the straight line
distances. Lazy Theta* expands start vertex A4, fol-
lowed by B3 and B2. When Lazy Theta* expands B3
with parent A4, B2 is an example of an unexpanded
visible neighbor of B3. Lazy Theta* optimistically
assumes that start vertex A4 is visible from B2 and
sets the parent of B2 to start vertex A4 (figure 18c).
Lazy Theta* expands B2 next. Since start vertex A4 is
not visible from B2, Lazy Theta* updates the g-value
and parent of B2 according to path 1 by considering
the paths from the start vertex A4 to each expanded
visible neighbor of B2 and from there to B2 in a
straight line. Lazy Theta* sets the parent of B2 to B3
since the path from start vertex A4 to B3 and from
there to B2 in a straight line is the only such path and
thus it is also the shortest such path (figure 18d). Lazy
Theta* terminates when it is about to expand goal
vertex C1 after it has checked that the parent of goal

vertex C1, namely B3, is indeed visible from goal ver-
tex C1. Path extraction then retrieves the shortest
path (A4, B3, C1) from start vertex A4 to goal vertex
C1.

Lazy Theta* can find the same paths as Theta* (fig-
ure 18). In the execution trace depicted in figure 18,
Lazy Theta* performs only four visibility checks,
while Theta* performs 5 + 6 + 6 = 17 visibility checks.
However, this is not guaranteed. Lazy Theta* typi-
cally finds slightly longer paths than Theta* but per-
forms many fewer visibility checks and is thus faster.
One can typically decrease the number of visibility
checks even more, using a strategy that A* can use
for the same purpose, namely weighting the h-val-
ues. Weighted Lazy Theta* (Nash 2012) calculates the
f-values (like Weighted A* [Pohl 1973]) as f(s) = g(s) +
w × h(s), where w > 1 is a user-given constant,
because this typically focuses the search better and
decreases the number of vertex expansions. There-
fore, it also decreases the number of visibility checks.
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Figure 17. Visibility Checks of Theta*.

(a) In 2D terrain. (b) In 3D terrain.



Both reductions make it faster. However, the path
length increases, just as it does for A*, although not
necessarily as much as it does for A*, for the follow-
ing reason: Lazy Theta* can set the parent of vertex s
to vertex s according to path 2 only if there exists a
grid path of expanded vertices from s to s such that
s is the parent of every vertex on the grid path
(except for s itself). Even if Lazy Theta* expands few
vertices, it can still set the parent of s to s as long as
there still exists a grid path with these properties, in
which case the path length does not increase.

Experimental Comparisons
Nash (2012) compared A* on grid graphs, Lazy
Theta*, Theta*, and A* with postsmoothing on
known 3D cubic grids with randomly blocked grid
cells (see also Nash, Koenig, and Tovey [2010]). Lazy
Theta*, Theta*, and A* with postsmoothing were
approximately 4.0, 6.7, and 46.5 times slower than
A* on grid graphs, respectively. The paths of Lazy
Theta*, Theta*, and A* with postsmoothing were
approximately 7.1, 7.2, and 5.7 percent shorter than
those of A* on grid graphs, respectively.
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Unknown 2D Terrain
Agents operate not only in 2D terrain with grid cells
of known blockage status but also in 2D terrain with
grid cells of unknown blockage status, for example,
because the blockage status of grid cells is initially
unknown (in unknown terrain) or changes over time
(in dynamic terrain). One way of navigating in ini-
tially unknown terrain is to interleave path planning
with movement, which requires agents to find paths
repeatedly. Consider, for example, an agent that has
to move from its current vertex to a given goal vertex
in initially unknown terrain, such as a game charac-
ter that has to move to coordinates specified by a user
despite the “fog of war” (that is, blacked-out areas).
The agent initially does not know which grid cells are
blocked but always observes the blockage status of
grid cells within its sensor radius and adds them to its
map. The agent can use goal-directed navigation with
the free-space assumption (Koenig, Smirnov, and
Tovey 2003) to reach the goal vertex or determine
that this is impossible: It finds a short path from its
current vertex to the goal vertex, taking into account
its current knowledge of the blockage status of grid
cells and making the free-space assumption (that is,
optimistically assuming that grid cells with unknown
blockage status are unblocked). If no such path exists,
it stops unsuccessfully. Otherwise, it follows the path
until it either reaches the goal vertex, in which case
it stops successfully, or observes the path to be
blocked, in which case it repeats the procedure, tak-
ing into account its revised knowledge of the block-
age status of grid cells and still optimistically assum-
ing that grid cells with unknown blockage status are
unblocked. Therefore, the agent has to find a new
short path every time it observes its current path to
be blocked.

Figure 19 shows goal-directed navigation with the
free-space assumption in operation on a 2D 8-neigh-
bor square grid with vertices placed at the corners of
grid cells, using A* on grid graphs rather than any-
angle path planning. The agent always observes the
blockage status of all grid cells that have the current
vertex as a corner. The start vertex is C2, and the goal
vertex is D6. The agent starts at C2 and finds a short-
est grid path from its current vertex C2 to goal vertex
D6 assuming that all grid cells are unblocked. It fol-
lows the path to C3, where it observes two grid cells
that block its path. It finds a shortest grid path from
its current vertex C3 to goal vertex D6 taking the two
blocked grid cells into account. It then follows the
path through D3 to D4, where it observes another
two grid cells that block its path, and repeats the pro-
cedure.

The agent thus has to solve a series of similar path-
planning problems. It has to solve them quickly so
that it can move without stopping. Incremental
path-planning algorithms (Koenig et al. 2004) solve a
series of similar path-planning problems quickly by
reusing information from previous searches to speed

up their current search, which typically makes them
faster than repeated A* searches from scratch. The
main difference between this approach and most
other replanning and plan-reuse algorithms (such as
planning by analogy) is that incremental path-plan-
ning algorithms are guaranteed to find paths that are
no longer than those found by repeated A* searches
from scratch.

Some any-angle path-planning algorithms,
including Field D* and Theta*, can use incremental
path-planning techniques to replan faster than
repeated searches from scratch. Field D* was
designed for this case by extending the incremental
heuristic path-planning algorithm D* Lite (Koenig
and Likhachev 2005) or D* (Stentz 1995). However,
Theta* cannot easily extend D* Lite because the par-
ent of a vertex is not guaranteed to be its neighbor
and its f-values are not guaranteed to be nonde-
creasing. Incremental Phi* (Nash, Koenig, and
Likhachev 2009) is an incremental variant of Theta*
that can currently handle only the case where the
blockage status of grid cells is initially unknown
(which is equivalent to the case where the costs of
grid edges can increase to infinity), while Field D*
can also handle the case where the blockage status of
grid cells changes over time (or, more generally, the
case where the costs of grid edges can increase and
decrease by arbitrary amounts). Incremental Phi*
applies only to 2D 8-neighbor square grids with ver-
tices placed at the corners of grid cells, while Field D*
can be modified so that it applies to additional types
of graphs embedded in 2D or 3D terrain, as
explained in the Known 2D Terrain and Known 3D
Terrain sections. However, neither Incremental Phi*
nor Field D* apply to every graph embedded in 2D or
3D terrain.

Experimental Comparisons
Ferguson and Stenz (2006) compared D* Lite and
Field D* on unknown 2D grids with randomly
assigned nonuniform traversal costs; see also Fergu-
son (2006). Field D* was approximately 1.7 times
slower than D* Lite. Its paths were approximately 4
percent less costly than those of Field D*.

Nash (2012) compared Incremental Phi* and
repeated Theta* searches on unknown 2D game
maps and unknown 2D square grids with randomly
blocked grid cells; see also Nash, Koenig, and
Likhachev (2009). Repeated Theta* searches were
approximately 6.0 times slower than Incremental
Phi*. Their paths were less than 1 percent shorter
than those of Incremental Phi*.

Conclusions
We provided a sketch of an analysis of how much
longer shortest grid paths can be than shortest paths.
The results suggested that it might be necessary to
find shorter paths than shortest grid paths. Any-
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angle path-planning algorithms are variants of A*
that find short paths in (continuous) terrain by prop-
agating information along grid edges (like A* on grid
graphs, to be fast) without constraining the resulting
paths to grid edges (like A* on visibility graphs, to
find short paths). We surveyed the state of the art in
any-angle path-planning algorithms, including vari-
ants of Block A*, Field D*, and Theta* in known 2D
terrain, known 3D terrain, and unknown 2D terrain.
Future research should be dedicated to understand-
ing the full power of any-angle path-planning, to
broaden it from a few isolated path-planning algo-
rithms to a well-understood framework, to extend its
applicability (for example, to motion planning) and
to understand its properties better, including the
influence of design decisions on the trade-off with
respect to its memory consumption, the run times of
its searches, and the lengths of the resulting paths as
well as the guarantees it is able to provide. For exam-
ple, no tight bounds are known on the ratio of the

lengths of the paths found by specific any-angle
path-planning algorithms and shortest paths. Analy-
ses of any-angle path-planning algorithms are com-
plicated by the fact that even some of the basic prop-
erties of A* do not hold for any-angle path planning
algorithms. For example, A* has the property that the
f-values of all vertices along all branches of its search
trees are nondecreasing if the h-values are consistent.
Theta* does not have this property. Overall, any-
angle path planning appears to be a promising way of
trading off between the run times of the searches and
the lengths of the resulting paths in robotics and
video games. With respect to efficiency, any-angle
path-planning algorithms are typically faster than A*
on visibility graphs and find shorter paths than A* on
grid graphs. With respect to simplicity, any-angle
path-planning algorithms are typically simple to
understand, implement, debug and extend since they
extend A*, which has these properties. For example,
Theta* and Lazy Theta* are similar to A* and can eas-

Articles

104 AI MAGAZINE

(a) (b) (c)

(d) (e) (f)

Start 

Goal Goal Goal

Goal Goal Goal

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

21 3 21 13 2 3

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

21 3 21 13 2 3

Unknown grid cell
(assumed unblocked)

Known grid cell
(unblocked)

Known grid cell
(blocked)

4 5 6 7 4 5 6 7 4 5 6 7

4 5 6 7 4 5 6 7 4 5 6 7

Figure 19. Execution Trace of Goal-Directed Navigation with the Free-Space Assumption.



ily be taught to game developers and undergraduate
students; see the tutorials and class project listed
under Recent Resources. Finally, with respect to gen-
erality, some any-angle path-planning algorithms,
such as Theta*, apply to every graph embedded in 2D
or 3D terrain.
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Notes
1. From personal communication with Dave Ferguson in
2013.
2. Figure 9a depicts an example in which there is discretiza-
tion bias.
3. We allow the straight line to pass through diagonally
touching blocked grid cells but can easily relax this restric-
tion.
4. In the pseudocode, sstart is the start vertex, and sgoal is the
goal vertex. lineofsight(s, s) is true if and only if vertices s
and s are visible from each other. nghrvis(s) is the finite set
of visible neighbors of vertex s. open.Insert(s, x) inserts ver-
tex s with key x into priority queue open, open.Remove(s)
removes s from priority queue open, and open.Pop() removes
a vertex with the smallest key from priority queue open and
returns it. Finally, arg minxX f(x) returns a value y such that
minxX f(x) = y.
5. From personal communication with A. Champandard in
2010.
6.  See P. Tozour, Fixing Pathfinding Once and For All,
www.ai-blog.net/archives/000152.html
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Recent Resources

Dissertations 
See Ferguson (2006) and Nash (2012).

Accelerated A* Publications
See Sislak, Volf, and Pechoucek (2009a),  and Sislak,
Volf, and Pechoucek (2009b).

Anya Publication
See Harabor and Grastien (2013).

Block A* Publications 
See Yap et al. (2011a and 2011b).

Field D* Publications
See Carsten, Ferguson, and Stentz (2006); Ferguson and
Stentz (2006); Sapronov and Lacaze (2008); and Carsten
et al. (2009).

Theta* Publications
See Nash et al. (2007); Koenig, Daniel, and Nash (2008);
Nash, Koenig, and Likhachev (2009); Daniel et al.
(2010); Nash, Koenig, and Tovey (2010); and Choi and
Yu (2011).

Web Pages 
For  information on Theta* and its variants, see idm-
lab.org/project-o.html.

For an online tutorial on Theta*, see aigamedev.com/
open/tutorials/theta-star-any-angle-paths.

For an online tutorial on Lazy Theta*, see aigamedev.
com/open/tutorial/lazy-theta-star.

Class Project 
A stand-alone 14-page path-planning project for an
undergraduate or graduate artificial intelligence class
has been created as part of an effort to use video games
as a motivator in projects without the students having
to use game engines. The project has successfully been
used at the University of Nevada at Reno, New Mexico
State University, and the University of Southern Cali-
fornia and was chosen in 2010 as a model artificial intel-
ligence assignment by the AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (Koenig,
Daniel, and Nash 2008). In this project, the students
code A* and then extend it to Theta* to find paths for
game characters in known grid worlds. The students
have to develop an understanding of A* to answer ques-
tions that are not yet covered in textbooks.The project
lists 18 possible project choices, both easy and difficult
ones, that cover theoretical and implementation aspects
of heuristic search. Information on the project can be
found at idm-lab.org/project-m/project2.html.



7. Figure 12 highlights both the operation of Field D* and
its disadvantages to save space. The work of Ferguson and
Stentz (2006) contains additional examples of the operation
of Field D*.
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