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A Review of Real-Time
Strategy Game AI

Glen Robertson, Ian Watson

Games are an ideal domain for exploring the capabili-
ties of artificial intelligence (AI) within a constrained
environment and a fixed set of rules, where problem-

solving techniques can be developed and evaluated before
being applied to more complex real-world problems (Scha-
effer 2001). AI has notably been applied to board games,
such as chess, Scrabble, and backgammon, creating compe-
tition that has sped the development of many heuristic-
based search techniques (Schaeffer 2001). Over the past
decade, there has been increasing interest in research based
on video game AI, which was initiated by Laird and van Lent
(2001) in their call for the use of video games as a test bed
for AI research. They saw video games as a potential area for
iterative advancement in increasingly sophisticated scenar-
ios, eventually leading to the development of human-level
AI. Buro (2003) later called for increased research in real-time
strategy (RTS) games as they provide a sandbox for exploring
various complex challenges that are central to game AI and
many other problems.

Video games are an attractive alternative to robotics for AI
research because they increasingly provide a complex and
realistic environment for simulation, with few of the messy
properties (and cost) of real-world equipment (Buro 2004;
Laird and van Lent 2001). They also present a number of
challenges that set them apart from the simpler board games
that AI has famously been applied to in the past. Video
games often have real-time constraints that prevent players
from thinking extensively about each action, randomness
that prevents players from completely planning future
events, and hidden information that prevents players from

n This literature review covers AI techniques
used for real-time strategy video games, focus-
ing specifically on StarCraft. It finds that the
main areas of current academic research are
in tactical and strategic decision making, plan
recognition, and learning, and it outlines the
research contributions in each of these areas.
The paper then contrasts the use of game AI
in academe and industry, finding the aca-
demic research heavily focused on creating
game-winning agents, while the industry
aims to maximize player enjoyment. It finds
that industry adoption of academic research
is low because it is either inapplicable or too
time-consuming and risky to implement in a
new game, which highlights an area for
potential investigation: bridging the gap
between academe and industry. Finally, the
areas of spatial reasoning, multiscale AI, and
cooperation are found to require future work,
and standardized evaluation methods are pro-
posed to produce comparable results between
studies.
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Figure 1. A Typical Match Start in an RTS Game. 

Worker units have been sent to gather resources (right) and return them to the central building. Resources (recorded top right) are being
spent building an additional worker (bottom center). Dark fog (left) blocks visibility away from player units.
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knowing exactly what the other players are doing.
Similar to many board games, competitive video
games usually require adversarial reasoning to react
according to other players’ actions (Laird and van
Lent 2001; Mehta et al. 2009; Weber, Mateas, and
Jhala 2010).

RTS Games
This article is focused on real-time strategy games,
which are essentially simplified military simulations.
In an RTS game, a player indirectly controls many
units and structures by issuing orders from an over-
head perspective (figure 1) in real time in order to
gather resources, build an infrastructure and an army,
and destroy the opposing player’s forces. The real-
time aspect comes from the fact that players do not
take turns, but instead may perform as many actions
as they are physically able to make, while the game
simulation runs at a constant frame rate (24 frames

per second in StarCraft) to approximate a continuous
flow of time. Some notable RTS games include Dune
II, Total Annihilation, and the Warcraft, Command &
Conquer, Age of Empires, and StarCraft series.

Generally, each match in an RTS game involves
two players starting with a few units and/or struc-
tures in different locations on a two-dimensional ter-
rain (map). Nearby resources can be gathered in order
to produce additional units and structures and pur-
chase upgrades, thus gaining access to more
advanced in-game technology (units, structures, and
upgrades). Additional resources and strategically
important points are spread around the map, forcing
players to spread out their units and buildings in
order to attack or defend these positions. Visibility is
usually limited to a small area around player-owned
units, limiting information and forcing players to
conduct reconnaissance in order to respond effec-
tively to their opponents. In most RTS games, a
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match ends when one player (or team) destroys all
buildings belonging to the opponent player (or
team), although often players will forfeit earlier
when they see they cannot win.

RTS games have a variety of military units, used by
the players to wage war, as well as units and struc-
tures to aid in resource collection, unit production,
and upgrades. During a match, players must balance
the development of their economy, infrastructure,
and upgrades with the production of military units,
so they have enough units to successfully attack and
defend in the present and enough resources and
upgrades to succeed later. They must also decide
which units and structures to produce and which
technologies to advance throughout the game in
order to have access to the appropriate composition
of units at the appropriate times. This long-term
high-level planning and decision making, often
called macromanagement, is referred to in this article
as strategic decision making. In addition to strategic
decision making, players must carefully control their
units in order to maximize their effectiveness on the
battlefield. Groups of units can be maneuvered into
advantageous positions on the map to surround or
escape the enemy, and individual units can be con-
trolled to attack a weak enemy unit or avoid an
incoming attack. This short-term control and deci-
sion making with individual units, often called
micromanagement, and medium-term planning
with groups of units, often called tactics, is referred to
collectively in this article as tactical decision making.

In addition to the general video game challenges
mentioned above, RTS games involve long-term
goals and usually require multiple levels of abstrac-
tion and reasoning. They have a vast space of actions
and game states, with durative actions, a huge
branching factor, and actions that can have long-
term effects throughout the course of a match (Buro
and Churchill 2012; Buro and Furtak 2004; Mehta et
al. 2009; Ontañón 2012; Tozour 2002; Weber,
Mateas, and Jhala 2010). Even compared with Go,
which is currently an active area of AI research, RTS
games present a huge increase in complexity — at
least an order of magnitude increase in the number
of possible game states, actions to choose from,
actions per game, and actions per minute (using stan-
dard rules) (Buro 2004; Schaeffer 2001; Synnaeve and
Bessière 2011b). The state space is so large that tradi-
tional heuristic-based search techniques, which have
proven effective in a range of board games (Schaeffer
2001), have so far been unable to solve all but the
most restricted subproblems of RTS AI. Due to their
complexity and challenges, RTS games are probably
the best current environment in which to pursue
Laird and van Lent’s vision of game AI as a stepping
stone toward human-level AI. It is a particularly
interesting area for AI research because even the best
agents are outmatched by experienced humans
(Huang 2011; Synnaeve and Bessière 2011a; Weber,

Mateas, and Jhala 2010), due to the human abilities
to abstract, reason, learn, plan, and recognize plans
(Buro 2004; Buro and Churchill 2012).

StarCraft
This article primarily examines AI research within a
subtopic of RTS games: the RTS game StarCraft1 (fig-
ure 2). StarCraft is a canonical RTS game, like chess is
to board games, with a huge player base and numer-
ous professional competitions. The game has three
different but very well balanced teams, or races,
allowing for varied strategies and tactics without any
dominant strategy, and requires both strategic and
tactical decision making roughly equally (Synnaeve
and Bessière 2011b). These features give StarCraft an
advantage over other RTS titles that are used for AI
research, such as Wargus2 and ORTS.3

StarCraft was chosen because of its increasing pop-
ularity for use in RTS game AI research, driven by the
Brood War application programming interface
(BWAPI)4 and the AIIDE5 and CIG6 StarCraft AI Com-
petitions. BWAPI provides an interface to program-
matically interact with StarCraft, allowing external
code to query the game state and execute actions as
if they were a player in a match. The competitions
pit StarCraft AI agents (or bots) against each other in
full games of StarCraft to determine the best bots and
improvements each year (Buro and Churchill 2012).
Initially these competitions also involved simplified
challenges based on subtasks in the game, such as
controlling a given army to defeat an opponent with
an equal army, but more recent competitions have
used only complete matches. For more detail on Star-
Craft competitions and bots, see Ontañón et al. (in
press).

In order to develop AI for StarCraft, researchers
have tried many different techniques, as outlined
in table 1. A community has formed around the
game as a research platform, enabling people to
build on each other’s work and avoid repeating the
necessary groundwork before an AI system can be
implemented.

This work includes a terrain analysis module
(Perkins 2010), well-documented source code for a
complete, modular bot (Churchill and Buro 2012),
and preprocessed data sets assembled from thou-
sands of professional games (Synnaeve and Bessière
2012). StarCraft has a lasting popularity among pro-
fessional and amateur players, including a large pro-
fessional gaming scene in South Korea, with interna-
tional competitions awarding millions of dollars in
prizes every year (Churchill and Buro 2011). This
popularity means that there are a large number of
high-quality game logs (replays) available on the
Internet that can be used for data mining, and there
are many players of all skill levels to test against
(Buro and Churchill 2012; Synnaeve and Bessière
2011b; Weber, Mateas, and Jhala 2011a).

This article presents a review of the literature on



RTS AI with an emphasis on StarCraft. It includes
particular research based on other RTS games in the
case that significant literature based on StarCraft is
not (yet) available in that area. The article begins by
outlining the different AI techniques used, grouped
by the area in which they are primarily applied.
These areas are tactical decision making, strategic
decision making, plan recognition, and learning.
This is followed by a comparison of the way game AI
is used in academe and the game industry, which
outlines the differences in goals and discusses the
low adoption of academic research in the industry.
Finally, some areas are identified in which there
does not seem to be sufficient research on topics
that are well-suited to study in the context of RTS
game AI. This last section also calls for standardiza-
tion of the evaluation methods used in StarCraft AI

research in order to make comparison possible
between papers.

Tactical Decision Making
Tactical and micromanagement decisions — control-
ling individual units or groups of units over a short
period of time — often make use of a different tech-
nique from the AI that makes strategic decisions.
These tactical decisions can follow a relatively simple
metric, such as attempting to maximize the amount
of enemy firepower that can be removed from the
playing field in the shortest time (Davis 1999). In the
video game industry, it is common for simple tech-
niques, such as finite state machines, to be used to
make these decisions (Buckland 2005). However,
even in these small-scale decisions, many factors can
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Figure 2. Part of a Player’s Base in StarCraft. 

The white rectangle on the minimap (bottom left) is the area visible on screen. The minimap shows areas that are unexplored (black),
explored but not visible (dark), and visible (light). It also shows the player’s forces (lighter dots) and last-seen enemy buildings (darker dots).
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be considered to attempt to make the best decisions
possible, particularly when using units with varied
abilities (figure 3), but the problem space is not near-
ly as large as that of the full game, making feasible
exploratory approaches to learning domain knowl-
edge (Weber and Mateas 2009). There appears to be
less research interest in this aspect of RTS game AI
than in the area of large-scale, long-term strategic
decision making and learning.

Reinforcement Learning
Reinforcement learning (RL) is an area of machine
learning in which an agent must learn, by trial and
error, optimal actions to take in particular situations
order to maximize an overall reward value (Sutton
and Barto 1998). Through many iterations of weakly
supervised learning, RL can discover new solutions

that are better than previously known solutions. It is
relatively simple to apply to a new domain, as it
requires only a description of the situation and pos-
sible actions, and a reward metric (Manslow 2004).
However, in a domain as complex as an RTS game —
even just for tactical decision making — RL often
requires clever state abstraction mechanisms in order
to learn effectively. This technique is not commonly
used for large-scale strategic decision making, but is
often applied to tactical decision making in RTS
games, likely because of the huge problem space and
delayed reward inherent in strategic decisions, which
make RL difficult.

RL has been applied to StarCraft by Shantia,
Begue, and Wiering (2011), where Sarsa, an algo-
rithm for solving RL problems, is used to learn to
control units in small skirmishes. They made use of
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Figure 3. A Battle in StarCraft.

Intense micromanagement is required to maximize the effectiveness of individual units, especially spellcaster units like the
Protoss Arbiter.
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artificial neural networks to learn the expected
reward for attacking or fleeing with a particular unit
in a given state (figure 4), and chose the action with
the highest expected reward when in-game. The sys-
tem learned to beat the inbuilt StarCraft AI scripting
on average in only small three-unit skirmishes, with
none of the variations learning to beat the in-built
scripting on average in six-unit skirmishes (Shantia,
Begue, and Wiering 2011).

RL techniques have also been applied to other RTS

games. Sharma et al. (2007) and Molineaux, Aha, and
Moore (2008) combine case-based reasoning (CBR)
and RL for learning tactical-level unit control in
MadRTS7 (a description of CBR is presented later on
in this article). Sharma et al. (2007) was able to
increase the learning speed of the RL agent by begin-
ning learning in a simple situation and then gradual-
ly increasing the complexity of the situation. The
resulting performance of the agent was the same or
better than an agent trained in the complex situation
directly.

Their system stores its knowledge in cases that per-
tain to situations it has encountered before, as in
CBR. However, each case stores the expected utility
for every possible action in that situation as well as
the contribution of that case to a reward value, allow-
ing the system to learn desirable actions and situa-
tions. It remains to be seen how well it would work
in a more complex domain.

Molineaux, Aha, and Moore (2008) describe a sys-
tem for RL with nondiscrete actions. Their system
retrieves similar cases from past experience and esti-
mates the result of applying each case’s actions to the
current state. It then uses a separate case base to esti-
mate the value of each estimated resulting state, and
extrapolates around, or interpolates between, the
actions to choose one that is estimated to provide the
maximum value state. This technique results in a sig-
nificant increase in performance when compared
with one using discrete actions (Molineaux, Aha, and
Moore 2008).

Human critique is added to RL by Judah et al.
(2010) in order to learn tactical decision making for
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Figure 4. Game State Information Fed into a Neural Network to Produce an Expected Reward Value for a Particular Action. 

Adapted from Shantia, Begue, and Wiering (2011).

Table 1. AI Techniques Used for StarCraft.

Tactical Decision Making Strategic Decision Making 
and Plan Recognition 

Reinforcement Learning 

Game-Tree Search 

Bayesian models 

Case-Based Reasoning 

Neural Networks 

Case-Based Planning 

Hierarchical Planning 

Behavior Trees 

Goal-Driven Autonomy 

State Space Planning 

Evolutionary Algorithms 

Cognitive Architectures 

Deductive Reasoning 

Probabilistic Reasoning 

Case-Based Reasoning 



controlling a small group of units in combat in War-
gus. By interleaving sessions of autonomous state
space exploration and human critique of the agent’s
actions, the system was able to learn a better policy
in a fraction of the training iterations compared with
using RL alone. However, slightly better overall
results were achieved using human critique only to
train the agent, possibly due to humans giving better
feedback when they can see an immediate result
(Judah et al. 2010).

Marthi et al. (2005) argues that it is preferable to
decrease the apparent complexity of RTS games and
potentially increase the effectiveness of RL or other
techniques by decomposing the game into a hierar-
chy of interacting parts. Using this method, instead
of coordinating a group of units by learning the cor-
rect combination of unit actions, each unit can be
controlled individually with a higher-level group
control affecting each individual’s decision. Similar
hierarchical decomposition appears in many RTS AI
approaches because it reduces complexity from a
combinatorial combination of possibilities — in this
case, possible actions for each unit — down to a mul-
tiplicative combination.

Game-Tree Search
Search-based techniques have so far been unable to
deal with the complexity of the long-term strategic
aspects of RTS games, but they have been successful-
ly applied to smaller-scale or abstracted versions of
RTS combat. To apply these search methods, a simu-
lator is usually required to allow the AI system to
evaluate the results of actions very rapidly in order to
explore the game tree.

Sailer, Buro, and Lanctot (2007) take a game theo-
retic approach by searching for the Nash equilibrium
strategy among a set of known strategies in a simpli-
fied RTS. Their simplified RTS retains just the tactics
aspect of RTS games by concentrating on unit group
movements, so it does not require long-term plan-
ning for building infrastructure and also excludes
micromanagement for controlling individual units.
They use a simulation to compare the expected out-
come from using each of the strategies against their
opponent, for each of the strategies their opponent
could be using (which is drawn from the same set),
and select the Nash-optimal strategy. The simulation
can avoid simulating every time step, skipping
instead to just the states in which something inter-
esting happens, such as a player making a decision,
or units coming into firing range of opponents.
Through this combination of abstraction, state skip-
ping, and needing to examine only the possible
moves prescribed by a pair of known strategies at a
time, it is usually possible to search all the way to an
end-game state very rapidly, which in turn means a
simple evaluation function can be used. The resulting
Nash player was able to defeat each of the scripted
strategies, as long as the set included a viable coun-

terstrategy for each strategy, and it also produced
better results than the max-min and min-max play-
ers (Sailer, Buro, and Lanctot 2007).

Search-based techniques are particularly difficult
to use in StarCraft because of the closed-source
nature of the game and inability to arbitrarily manip-
ulate the game state. This means that the precise
mechanics of the game rules are unclear, and the
game cannot be easily set up to run from a particu-
lar state to be used as a simulator. Furthermore, the
game must carry out expensive calculations such as
unit vision and collisions, and cannot be forced to
skip ahead to just the interesting states, making it
too slow for the purpose of search (Churchill, Saffi-
dine, and Buro 2012). In order to overcome these
problems, Churchill, Saffidine, and Buro (2012) cre-
ated a simulator called SparCraft8 that models Star-
Craft and approximates the rules, but allows the
state to be arbitrarily manipulated and unnecessary
expensive calculations to be ignored (including skip-
ping uninteresting states). Using this simulator and
a modified version of alpha-beta search, which takes
into consideration actions of differing duration, they
could find effective moves for a given configuration
of units. Search time was limited to approximate
real-time conditions, so the moves found were not
optimal. This search allowed them to win an average
of 92 percent of randomized balanced scenarios
against all of the standard scripted strategies they
tested against within their simulator (Churchill, Saf-
fidine, and Buro 2012).

Despite working very well in simulation, the
results do not translate perfectly back to the actual
game of StarCraft, due to simplifications, such as the
lack of unit collisions and acceleration, that affect
the outcome (Churchill and Buro 2012; Churchill,
Saffidine, and Buro 2012). The system was able to
win only 84 percent of scenarios against the built in
StarCraft AI despite the simulation predicting 100
percent, faring the worst in scenarios that were set
up to require hit-and-run behavior (Churchill and
Buro 2012). The main limitation of this system is
that due to the combinatorial explosion of possible
actions and states as the number of units increases,
the number of possible actions in StarCraft, and a
time constraint of 5ms per game frame, the search
will only allow up to eight units per side in a two-
player battle before it is too slow. On the other hand,
better results may be achieved through opponent
modeling, because the search can incorporate
known opponent actions instead of searching
through all possible opponent actions.

When this was tested on the scripted strategies
with a perfect model of each opponent (the scripts
themselves), the search was able to achieve at least a
95 percent win rate against each of the scripts in sim-
ulation (Churchill, Saffidine, and Buro 2012).

Monte Carlo Planning
Monte Carlo planning has received significant atten-
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tion recently in the field of computer Go, but seems
to be almost absent from RTS AI, and (to the authors’
knowledge) completely untested in the domain of
StarCraft. It involves sampling the decision space
using randomly generated plans in order to find out
which plans tend to lead to more successful out-
comes. It may be very suitable for RTS games because
it can deal with uncertainty, randomness, large deci-
sion spaces, and opponent actions through its sam-
pling mechanism. Monte Carlo planning has likely
not yet been applied to StarCraft due to the unavail-
ability of an effective simulator, as was the case with
the search methods above, as well as the complexity
of the domain. However, it has been applied to some
very restricted versions of RTS games. Although both
of the examples seen here are considering tactical-
and unit-level decisions, given a suitable abstraction
and simulation, Monte Carlo tree search (MCTS) may
also be effective at strategic level decision making in
a domain as complex as StarCraft.

Chung, Buro, and Schaeffer (2005) created a cap-
ture-the-flag game in which each player needed to
control a group of units to navigate through obsta-
cles to the opposite side of a map and retrieve the
opponent’s flag. They created a generalized Monte
Carlo planning framework and then applied it to
their game, producing positive results. Unfortunate-
ly, they lacked a strong scripted opponent to test
against, and their system was also very reliant on
heuristic evaluations of intermediate states in order
to make planning decisions. Later, Balla and Fern
(2009) applied the more recent technique of upper
confidence bounds applied to trees (UCT) to a sim-
plified Wargus scenario. A major benefit of their
approach is that it does not require a heuristic evalu-
ation function for intermediate states, and instead
plays a game randomly out to a terminal state in
order to evaluate a plan. The system was evaluated by
playing against a range of scripts and a human play-
er in a scenario involving multiple friendly and ene-
my groups of the basic footman unit placed around
an empty map. In these experiments, the UCT sys-
tem made decisions at the tactical level for moving
groups of units while micromanagement was con-
trolled by the inbuilt Wargus AI, and the UCT evalu-
ated terminal states based on either unit hit points
remaining or time taken. The system was able to win
all of the scenarios, unlike any of the scripts, and to
overall outperform all of the other scripts and the
human player on the particular metric (either hit
points or time) that it was using.

Other Techniques
Various other AI techniques have been applied to tac-
tical decision making in StarCraft. Synnaeve and
Bessière (2011b) combine unit objectives, opportuni-
ties, and threats using a Bayesian model to decide
which direction to move units in a battle. The mod-
el treats each of its sensory inputs as part of a proba-

bility equation that can be solved, given data (poten-
tially learned through RL) about the distributions of
the inputs with respect to the direction moved, to
find the probability that a unit should move in each
possible direction. The best direction can be selected,
or the direction probabilities can be sampled over to
avoid having two units choose to move into the same
location. Their Bayesian model is paired with a hier-
archical finite state machine to choose different sets
of behavior for when units are engaging or avoiding
enemy forces, or scouting. The bot produced was very
effective against the built-in StarCraft AI as well as its
own ablated versions (Synnaeve and Bessière 2011b).

CBR, although usually used for strategic reasoning
in RTS AI, has also been applied to tactical decision
making in Warcraft III,9 a game that has a greater
focus on micromanagement than StarCraft
(Szczepanski and Aamodt 2009). CBR generally
selects the most similar case for reuse, but Szczepan-
ski and Aamodt (2009) added a conditional check to
each case so that it could be selected only when its
action was able to be executed. They also added reac-
tionary cases that would be executed as soon as cer-
tain conditions were met. The resulting agent was
able to beat the built in AI of Warcraft III in a micro-
management battle using only a small number of cas-
es, and was able to assist human players by micro-
managing battles to let the human focus on
higher-level strategy.

Neuroevolution is a technique that uses an evolu-
tionary algorithm to create or train an artificial neu-
ral network. Gabriel, Negru, and Zaharie (2012) use a
neuroevolution approach called rtNEAT to evolve
both the topology and connection weights of neural
networks for individual unit control in StarCraft. In
their approach, each unit has its own neural network
that receives input from environmental sources (such
as nearby units or obstacles) and hand-defined
abstractions (such as the number, type, and quality
of nearby units), and outputs whether to attack,
retreat, or move left or right. During a game, the per-
formance of the units is evaluated using a hand-craft-
ed fitness function, and poorly performing unit
agents are replaced by combinations of the best-per-
forming agents. It is tested in very simple scenarios of
12 versus 12 units in a square arena, where all units
on each side are either a hand-to-hand or  ranged
type unit. In these situations, it learns to beat the
built-in StarCraft AI and some other bots. However, it
remains unclear how well it would cope with more
units or mixes of different unit types (Gabriel, Negru,
and Zaharie 2012).

Strategic Decision Making
In order to create a system that can make intelligent
actions at a strategic level in an RTS game, many
researchers have created planning systems. These sys-
tems are capable of determining sequences of actions

Articles

82 AI MAGAZINE



to be taken in a particular situation in order to
achieve specified goals. It is a challenging problem
because of the incomplete information available —
“fog of war” obscures areas of the battlefield that are
out of sight of friendly units — as well as the huge
state and action spaces and many simultaneous non-
hierarchical goals. With planning systems,
researchers hope to enable AI to play at a humanlike
level, while simultaneously reducing the develop-
ment effort required when compared with the script-
ing commonly used in industry. The main tech-
niques used for planning systems are case-based
planning (CBP), goal-driven autonomy (GDA) and
hierarchical planning.

A basic strategic decision-making system was pro-
duced in-house for the commercial RTS game Kohan
II: Kings of War10 (Dill 2006). It assigned resources —
construction, research, and upkeep capacities — to
goals, attempting to maximize the total priority of
the goals that could be satisfied. The priorities were
set by a large number of hand-tuned values, which
could be swapped for a different set to give the AI dif-
ferent personalities (Dill 2006). Each priority value
was modified based on relevant factors of the current
situation, a goal commitment value (to prevent flip-
flopping once a goal has been selected) and a random
value (to reduce predictability). It was found that this
not only created a fun, challenging opponent, but
also made the AI easier to update for changes in game
design throughout the development process (Dill
2006).

Case-Based Planning
CBP is a planning technique that finds similar past
situations from which to draw potential solutions to
the current situation. In the case of a CBP system, the
solutions found are a set of potential plans or sub-
plans that are likely to be effective in the current sit-
uation. CBP systems can exhibit poor reactivity at the
strategic level and excessive reactivity at the action
level, not reacting to high-level changes in situation
until a low-level action fails, or discarding an entire
plan because a single action failed (Palma et al. 2011).

One of the first applications of CBP to RTS games
was by Aha, Molineaux, and Ponsen (2005), who cre-
ated a system that extended the dynamic scripting
concept of Ponsen et al. (2005) to select tactics and
strategy based on the current situation. Using this
technique, their system was able to play against a
nonstatic opponent instead of requiring additional
training each time the opponent changed. They
reduced the complexity of the state and action spaces
by abstracting states into a state lattice of possible
orders in which buildings are constructed in a game
(build orders) combined with a small set of features,
and abstracting actions into a set of tactics generated
for each state. This allowed their system to improve
its estimate of the performance of each tactic in each
situation over multiple games, and eventually learn

to consistently beat all of the tested opponent scripts
(Aha, Molineaux, and Ponsen 2005).

Ontañón et al. (2007) use the ideas of behaviors,
goals, and alive-conditions from A Behavior Lan-
guage (ABL, introduced by Mateas and Stern [2002])
combined with the ideas from earlier CBP systems to
form a case-based system for playing Wargus. The
cases are learned from human-annotated game logs,
with each case detailing the goals a human was
attempting to achieve with particular sequences of
actions in a particular state. These cases can then be
adapted and applied in-game to attempt to change
the game state. By reasoning about a tree of goals
and subgoals to be completed, cases can be selected
and linked together into plan to satisfy the overall
goal of winning the game (figure 5).

During the execution of a plan, it may be modified
in order to adapt for unforeseen events or compen-
sate for a failure to achieve a goal.

Mishra, Ontañón, and Ram (2008) extend the
work of Ontañón et al. (2007) by adding a decision
tree model to provide faster and more effective case
retrieval. The decision tree is used to predict a high-
level situation, which determines the attributes and
attribute weights to use for case selection. This helps
by skipping unnecessary attribute calculations and
comparisons, and emphasizing important attributes.
The decision tree and weightings are learned from
game logs that have been human annotated to show
the high-level situation at each point throughout the
games. This annotation increased the development
effort required for the AI system but successfully pro-
vided better and faster case retrieval than the original
system (Mishra, Ontañón, and Ram 2008).

More recent work using CBP tends to focus on the
learning aspects of the system instead of the plan-
ning aspects. As such, it is discussed further in the
Plan Recognition and Learning section.

A different approach is taken by Cadena and Gar-
rido (2011), who combine the ideas of CBR with
those of fuzzy sets, allowing the reasoner to abstract
state information by grouping continuous feature
values. This allows them to vastly simplify the state
space, and it may be a closer representation of
human thinking, but could potentially result in the
loss of important information. For strategic decision
making, their system uses regular cases made up of
exact unit and building counts, and selects a plan
made up of five high-level actions, such as creating
units or buildings. But for tactical reasoning (micro-
management is not explored), their system main-
tains independent fuzzy state descriptions and car-
ries out independent CBR for each region of the
map, thus avoiding reasoning about the map as a
whole at the tactical level. Each region’s state
includes a linguistic fuzzy representation of its area
(for example, small, medium, big), choke points,
military presence, combat intensity, lost units, and
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amounts of each friendly and enemy unit type (for
example, none, few, many). After building the case
base from just one replay of a human playing against
the in-built AI, the system was able to win around 60
percent of games (and tie in about 15 percent) against
the AI on the same map. However, it is unclear how
well the system would fare at the task of playing
against different races (unique playable teams) and
strategies, or playing on different maps.

Hierarchical Planning
By breaking up a problem hierarchically, planning
systems are able to deal with parts of the situation
separately at different levels of abstraction, reducing
the complexity of the problem, but creating a poten-
tial new issue in coordination between the different
levels (Marthi et al. 2005; Weber et al. 2010). A hier-
archical plan maps well to the hierarchy of goals and
subgoals typical in RTS games, from the highest-lev-
el goals such as winning the game, to the lowest-lev-
el goals, which map directly to in-game actions.
Some researchers formalize this hierarchy into the
well-defined structure of a hierarchical task network
(HTN), which contains tasks, their ordering, and
methods for achieving them. High-level, complex
tasks in an HTN may be decomposed into a sequence
of simpler tasks, which themselves can be decom-
posed until each task represents a concrete action
(Muñoz-Avila and Aha 2004).

HTNs have been used for strategic decision mak-
ing in RTS games, but not for StarCraft. Muñoz-Avi-
la and Aha (2004) focus on the explanations that an
HTN planner is able to provide to a human querying
its behavior, or the reasons underlying certain
events, in the context of an RTS game. Laagland
(2008) implements and tests an agent capable of
playing an open source RTS called Spring11 using a

hand-crafted HTN. The HTN allows the agent to
react dynamically to problems, such as rebuilding a
building that is lost or gathering additional
resources of a particular type when needed, unlike
the built-in scripted AI. Using a balanced strategy,
the HTN agent usually beats the built-in AI in
Spring, largely due to better resource management.
Efforts to learn HTNs, such as Nejati, Langley, and
Konik (2006), have been pursued in much simpler
domains, but never directly used in the field of RTS
AI. This area may hold promise in the future for
reducing the work required to build HTNs.

An alternative means of hierarchical planning was
used by Weber et al. (2010). They use an active
behavior tree in A Behavior Language, which has
parallel, sequential, and conditional behaviors and
goals in a tree structure (figure 6) very similar to a
behavior tree (discussed in the next subsection).
However, in this model, the tree is expanded during
execution by selecting behaviors (randomly, or based
on conditions or priority) to satisfy goals, and differ-
ent behaviors can communicate indirectly by read-
ing or writing information on a shared whiteboard.

Hierarchical planning is often combined as part of
other methods, such as how Ontañón et al. (2007)
use a hierarchical CBP system to reason about goals
and plans at different levels.

Behavior Trees
Behavior trees are hierarchies of decision and action
nodes that are commonly used by programmers and
designers in the game industry in order to define
behaviors (effectively a partial plan) for agents (Palma
et al. 2011). They have become popular because,
unlike scripts, they can be created and edited using
visual tools, making them much more accessible and
understandable to nonprogrammers (Palma et al.
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2011). Additionally, their hierarchical structure en-
courages reuse, as a tree defining a specific behavior
can be attached to another tree in multiple positions
or can be customized incrementally by adding nodes
(Palma et al. 2011). Because behavior trees are hierar-
chical, they can cover a wide range of behavior, from
very low-level actions to strategic-level decisions. Pal-
ma et al. (2011) use behavior trees to enable direct
control of a case-based planner’s behavior. With their
system, machine learning can be used to create com-
plex and robust behavior through the planner, while
allowing game designers to change specific parts of
the behavior by substituting a behavior tree instead
of an action or a whole plan. This means they can
define custom behavior for specific scenarios, fix
incorrectly learned behavior, or tweak the learned
behavior as needed.

Goal-Driven Autonomy
GDA is a model in which “an agent reasons about its
goals, identifies when they need to be updated, and
changes or adds to them as needed for subsequent
planning and execution” (Molineaux, Klenk, and
Aha 2010). This addresses the high- and low-level
reactivity problem experienced by CBP by actively

reasoning about and reacting to why a goal is suc-
ceeding or failing.

Weber, Mateas, and Jhala (2010) describe a GDA
system for StarCraft using A Behavior Language,
which is able to form plans with expectations about
the outcome. If an unexpected situation or event
occurs, the system can record it as a discrepancy,
generate an explanation for why it occurred, and
form new goals to revise the plan, allowing the sys-
tem to react appropriately to unforeseen events (fig-
ure 7). It is also capable of simultaneously reasoning
about multiple goals at differing granularity. It was
initially unable to learn goals, expectations, or strate-
gies, so this knowledge had to be input and updated
manually, but later improvements allowed these to
be learned from demonstration (discussed in the
next section) (Weber, Mateas, and Jhala 2012). This
system was used in the Artificial Intelligence and
Interactive Digital Entertainment (AIIDE) StarCraft
AI competition entry EISBot and was also evaluated
by playing against human players on a competitive
StarCraft ladder called International Cyber Cup
(ICCup),12 where players are ranked based on their
performance — it attained a ranking indicating it
was better than 48 percent of the competitive play-

Figure 6. A Simple Active Behavior Tree Used for Hierarchical Planning.

The figure shows mental acts (calculation or processing), physical acts (in-game actions), and an unexpanded goal. Adapted from Weber et
al. (2010).
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ers (Weber, Mateas, and Jhala 2010; Weber et al.
2010).

Jaidee, Muñoz-Avila, and Aha (2011) integrate
CBR and RL to make a learning version of GDA,
allowing their system to improve its goals and
domain knowledge over time. This means that less
work is required from human experts to specify pos-
sible goals, states, and other domain knowledge
because missing knowledge can be learned automat-
ically. Similarly, if the underlying domain changes,
the learning system is able to adapt to the changes
automatically. However, when applied to a simple

domain, the system was unable to beat the perform-
ance of a nonlearning GDA agent (Jaidee, Muñoz-
Avila, and Aha 2011).

State Space Planning
Automated planning and scheduling is a branch of
classic AI research from which heuristic state space
planning techniques have been adapted for plan-
ning in RTS game AI. In these problems, an agent is
given a start and goal state, and a set of actions that
have preconditions and effects. The agent must then
find a sequence of actions to achieve the goal from
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Figure 7. GDA Conceptual Model.

A planner produces actions and expectations from goals, and unexpected outcomes result in additional goals being produced (Weber,
Mateas, and Jhala 2012).
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the starting state. Existing RTS applications add com-
plexity to the basic problem by dealing with durative
and parallel actions, integer-valued state variables,
and tight time constraints.

Automated planning ideas have already been
applied successfully to commercial first-person shoot-
er (FPS) games within an architecture called Goal-Ori-
ented Action Planning (GOAP). GOAP allows agents
automatically to select the most appropriate actions
for their current situation in order to satisfy a set of
goals, ideally resulting in more varied, complex, and
interesting behavior, while keeping code more
reusable and maintainable (Orkin 2004). However,
GOAP requires a large amount of domain engineer-
ing to implement and is limited because it maps
states to goals instead of to actions, so the planner
cannot tell whether achieving goals is going accord-
ing to the plan, failing, or has failed (Orkin 2004;
Weber, Mateas, and Jhala 2010). Furthermore, Cham-
pandard13 states that GOAP has now turned out to be
a dead end, as academe and industry have moved
away from GOAP in favor of hierarchical planners to
achieve better performance and code maintainabili-
ty.

However, Chan et al. (2007) and Churchill and
Buro (2011) use an automated planning-based
approach similar to GOAP to plan build orders in RTS
games. Unlike GOAP, they are able to focus on a sin-
gle goal: finding a plan to build a desired set of units
and buildings in a minimum duration (makespan).
The RTS domain is simplified by abstracting resource
collection to an income rate per worker, assuming
building placement and unit movement takes a con-
stant amount of time, and completely ignoring oppo-
nents. Ignoring opponents is fairly reasonable for the
beginning of a game, as there is generally little oppo-

nent interaction, and doing so means the planner
does not have to deal with uncertainty and external
influences on the state. Both of these methods still
require expert knowledge to provide a goal state for
them to pursue.

The earlier work by Chan et al. (2007) uses a com-
bination of means-ends analysis and heuristic sched-
uling in Wargus. Means-ends analysis produces a
plan with a minimal number of actions required to
achieve the goal, but this plan usually has a poor
makespan because it doesn’t consider concurrent
actions or actions that produce greater resources. A
heuristic scheduler then reorganizes actions in the
plan to start each action as soon as possible, adding
concurrency and reducing the makespan. To consid-
er producing additional resources, the same process
is repeated with an extra goal for producing more of
a resource (for each resource) at the beginning of the
plan, and the plan with the shortest makespan is
used. The resulting plans, though nonoptimal, were
found to be similar in length to plans executed by an
expert player, and vastly better than plans generated
by state-of-the-art general purpose planners (Chan et
al. 2007).

Churchill and Buro (2011) improve upon the ear-
lier work by using a branch-and-bound depth-first
search to find optimal build orders within an
abstracted simulation of StarCraft. In addition to the
simplifications mentioned above, they avoid simu-
lating individual time steps by allowing any action
that will eventually complete without further player
interaction, and jumping directly to the point at
which each action completes for the next decision
node. Even so, other smaller optimizations were
needed to speed up the planning process enough to
use in-game. The search used either the gathering
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Figure 8. Design of a Chromosome for Evolving RTS Game AI Strategies.
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time or the build time required to reach the goal
(whichever was longer) as the lower bound, and a
random path to the goal as the upper bound
(Churchill and Buro 2011). The system was evaluat-
ed against professional build orders seen in replays,
using the set of units and buildings owned by the
player at a particular time as the goal state. Due to
the computational cost of planning later in the
game, planning was restricted to 120 seconds ahead,
with replanning every 30 seconds. This produced
shorter or equal-length plans to the human players at
the start of a game, and similar-length plans on aver-
age (with a larger variance) later in the game. It
remains to be seen how well this method would per-
form for later stages of the game, as only the first 500
seconds were evaluated and searching took signifi-
cantly longer in the latter half. However, this appears
to be an effective way to produce near-optimal build
orders for at least the early to middle game of Star-
Craft (Churchill and Buro 2011).

Evolutionary Algorithms
Evolutionary algorithms search for an effective solu-
tion to a problem by evaluating different potential
solutions and combining or randomizing compo-
nents of high-fitness potential solutions to find new,
better solutions. This approach is used infrequently
in the RTS Game AI field, but it has been effectively
applied to the subproblem of tactical decision mak-
ing in StarCraft (discussed earlier) and learning
strategic knowledge in similar RTS titles.

Although evolutionary algorithms have not yet
been applied to strategic decision making in Star-
Craft, they have been applied to its sequel, StarCraft
II.14 The Evolution Chamber15 software uses the tech-
nique to optimize partially defined build orders. Giv-
en a target set of units, buildings, and upgrades to be
produced by certain times in the match, the software
searches for the fastest or least resource-intensive way
of reaching these targets. Although there have not
been any academic publications regarding this soft-
ware, it gained attention by producing an unusual
and highly effective plan in the early days of Star-
Craft II.

Ponsen et al. (2005) use evolutionary algorithms to
generate strategies in a game of Wargus. To generate
the strategies, the evolutionary algorithm combines
and mutates sequences of tactical and strategic-level
actions in the game to form scripts (figure 8) that
defeat a set of human-made and previously evolved
scripts. The fitness of each potential script is evaluat-
ed by playing it against the predefined scripts and
using the resulting in-game military score combined
with a time factor that favors quick wins or slow loss-
es. Tactics are extracted as sequences of actions from
the best scripts, and are finally used in a dynamic
script that chooses particular tactics to use in a given
state, based on its experience of their effectiveness —
a form of RL. The resulting dynamic scripts are able

to consistently beat most of the static scripts they
were tested against after learning for approximately
15 games against that opponent, but were unable to
consistently beat some scripts after more than 100
games (Ponsen et al. 2005; 2006). A drawback of this
method is that the effectiveness values learned for
the dynamic scripts assume that the opponent is stat-
ic and would not adapt well to a dynamic opponent
(Aha, Molineaux, and Ponsen 2005).

Cognitive Architectures
An alternative method for approaching strategic-lev-
el RTS game AI is to model a reasoning mechanism
on how humans are thought to operate. This could
potentially lead toward greater understanding of how
humans reason and allow us to create more human-
like AI. This approach has been applied to StarCraft as
part of a project using the Soar cognitive architecture,
which adapts the BWAPI interface to communicate
with a Soar agent.16 It makes use of Soar’s spatial visu-
al system to deal with reconnaissance activities and
pathfinding, and Soar’s working memory to hold per-
ceived and reasoned state information. However, it is
currently limited to playing a partial game of Star-
Craft, using only the basic barracks and marine units
for combat, and using hard-coded locations for build-
ing placement.16

A similar approach was taken by Wintermute, Xu,
and Laird (2007), but it applied Soar to ORTS instead
of StarCraft. They were able to interface the Soar cog-
nitive architecture to ORTS by reducing the com-
plexity of the problem using the concepts of group-
ing and attention for abstraction. These concepts are
based on human perception, allowing the underlying
Soar agent to receive information as a human would,
postperception — in terms of aggregated and filtered
information. The agent could view entire armies of
units as a single entity, but could change the focus of
its attention, allowing it to perceive individual units
in one location at a time, or groups of units over a
wide area (figure 9). This allowed the agent to control
a simple strategic-level RTS battle situation without
being overwhelmed by the large number of units
(Wintermute, Xu, and Laird 2007). However, due to
the limitations of Soar, the agent could pursue only
one goal at a time, which would be very limiting in
StarCraft and most complete RTS games.

Spatial Reasoning
RTS AI agents have to be able to reason about the
positions and actions of often large numbers of hid-
den objects, many with different properties, moving
over time, controlled by an opponent in a dynamic
environment (Weber, Mateas, and Jhala 2011b; Win-
termute, Xu, and Laird 2007). Despite the complexi-
ty of the problem, humans can reason about this
information very quickly and accurately, often pre-
dicting and intercepting the location of an enemy

Articles

88 AI MAGAZINE



attack or escape based on very little information, or
using terrain features and the arrangement of their
own units and buildings to their advantage. This
makes RTS a highly suitable domain for spatial rea-
soning research in a controlled environment (Buro
2004; Weber, Mateas, and Jhala 2011a; Wintermute,
Xu, and Laird 2007).

Even the analysis of the terrain in RTS games,
ignoring units and buildings, is a nontrivial task. In
order to play effectively, players need to be able to
know which regions of the terrain are connected to
other regions, and where and how these regions con-
nect. The connections between regions are as impor-
tant as the regions themselves, because they offer
defensive positions through which an army must
move to get into or out of the region (choke points).
Perkins (2010) describes the implementation and
testing of the Brood War Terrain Analyzer, which has
become a very common library for creating StarCraft
bots capable of reasoning about their terrain. The
library creates and prunes a Voronoi diagram using
information about the walkable tiles of the map,
identifies nodes as regions or choke points, then
merges adjacent regions according to thresholds that
were determined by trial and error to produce the

desired results. The choke point nodes are converted
into lines that separate the regions, resulting in a set
of region polygons connected by choke points (fig-
ure 10). When compared against the choke points
identified by humans, it had a 0–17 percent false
negative rate, and a 4–55 percent false positive rate,
and took up to 43 seconds to analyze the map, so
there is still definite room for improvement (Perkins
2010).

Once a player is capable of simple reasoning about
the terrain, it is possible to begin reasoning about the
movement of units over this terrain. A particularly
useful spatial reasoning ability in RTS games is to be
able to predict the location of enemy units while
they are not visible to a player. Weber, Mateas, and
Jhala (2011b) use a particle model for predicting ene-
my unit positions in StarCraft, based on the unit’s
trajectory and nearby choke points at the time it was
seen. A single particle was used for each unit instead
of a particle cloud because it is not possible to visu-
ally distinguish between two units of the same type,
so it would be difficult to update the cloud if a unit
was lost then resighted (Weber, Mateas, and Jhala
2011b). In order to account for the differences
between the unit types in StarCraft, they divided the
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Figure 9. Attention Limits the Information the Agent Receives by 
Hiding or Abstracting Objects Further from the Agent’s Area of Focus. 

(Wintermute, Xu, and Laird 2007).
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types into broad classes and learned a movement
model for each class from professional replays on a
variety of maps. The model allowed their bot to pre-
dict, with decreasing confidence over time, the sub-
sequent locations of enemy units after sighting them,
resulting in an increased win rate against other bots
(Weber, Mateas, and Jhala 2011b).

The bulk of spatial reasoning research in StarCraft
and other RTS games is based on potential fields
(PFs), and to a lesser extent, influence maps. Each of
these techniques help to aggregate and abstract spa-
tial information by summing the effect of individual
points of information into a field over an area, allow-

ing decisions to be made based on the computed field
strength at particular positions. They were first
applied to RTS games by Hagelbäck and Johansson
(2008), before which they were used for robot navi-
gation. Kabanza et al. (2010) use an influence map to
evaluate the potential threats and opportunities of an
enemy force in an effort to predict the opponent’s
strategy, and Uriarte and Ontañón (2012) use one to
evaluate threats and obstacles in order to control the
movement of units performing a hit-and-run behav-
ior known as kiting. Baumgarten, Colton, and Morris
(2009) use a few different influence maps for syn-
chronizing attacks by groups of units, moving and
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Figure 10. Terrain After Analysis.

The figure shows impassable areas in blue and choke points as lines between light areas (Perkins 2010).



grouping units, and choosing targets to attack. Weber
and Ontañón (2010) use PFs to aid a CBP system by
taking the field strengths of many different fields at a
particular position, so that the position is represent-
ed as a vector of field strengths, and can be easily
compared to others stored in the case base. Synnaeve
and Bessière (2011b) claim that their Bayesian mod-
el for unit movement subsumes PFs, as each unit is
controlled by Bayesian sensory inputs that are capa-
ble of representing threats and opportunities in dif-
ferent directions relative to the unit. However, their
system still needs to use damage maps in order to
summarize this information for use by the sensory
inputs (Synnaeve and Bessière 2011b).

PFs were used extensively in the Overmind Star-
Craft bot, for both offensive and defensive unit
behavior (Huang 2011). The bot used the fields to
represent opportunities and threats represented by
known enemy units, using information about unit
statistics so that the system could estimate how ben-
eficial and how costly it would be to attack each tar-
get. This allowed attacking units to treat the fields as
attractive and repulsive forces for movement, result-
ing in them automatically congregating on high-val-
ue targets and avoiding defenses.

Additionally, the PFs were combined with tempo-
ral reasoning components, allowing the bot to con-
sider the time cost of reaching a faraway target, and
the possible movement of enemy units around the
map, based on their speed and visibility. The result-
ing threat map was used for threat-aware pathfind-
ing, which routed units around more threatening
regions of the map by giving movement in threat-
ened areas a higher path cost. The major difficulty
they experienced in using PFs so much was in tuning
the strengths of the fields, requiring them to train the
agent in small battle scenarios in order to find appro-
priate values (Huang 2011). To the authors’ knowl-
edge, this is the most sophisticated spatial reasoning
that has been applied to playing StarCraft.

Plan Recognition and Learning
A major area of research in the RTS game AI literature
involves learning effective strategic-level game play.
By using an AI system capable of learning strategies,
researchers aim to make computer opponents more
challenging, dynamic, and humanlike, while making
them easier to create (Hsieh and Sun 2008). StarCraft
is a very complex domain to learn from, so it may
provide insights into learning to solve real-world
problems. Some researchers have focused on the sub-
problem of determining an opponent’s strategy,
which is particularly difficult in RTS games due to
incomplete information about the opponent’s
actions, hidden by the “fog of war” (Kabanza et al.
2010). Most plan recognition makes use of an exist-
ing plan library to match against when attempting to
recognize a strategy, but some methods allow for plan

recognition without any predefined plans (Cheng
and Thawonmas 2004; Synnaeve and Bessière
2011a). Often, data is extracted from the widely
available replays files of expert human players, so a
data set was created in order to reduce repeated work
(Synnaeve and Bessière 2012). This section divides
the plan recognition and learning methods into
deductive, abductive, probabilistic, and case-based
techniques. Within each technique, plan recogni-
tion can be either intended — plans are denoted for
the learner and there is often interaction between
the expert and the learner — or keyhole — plans are
indirectly observed and there is no two-way interac-
tion between the expert and the learner.

Deductive
Deductive plan recognition identifies a plan by com-
paring the situation with hypotheses of expected
behavior for various known plans. By observing par-
ticular behavior a deduction can be made about the
plan being undertaken, even if complete knowledge
is not available. The system described by Kabanza et
al. (2010) performs intended deductive plan recogni-
tion in StarCraft by matching observations of its
opponent against all known strategies that could
have produced the situation. It then simulates the
possible plans to determine expected future actions
of its opponent, judging the probability of plans
based on new observations and discarding plans that
do not match (figure 11). The method used requires
significant human effort to describe all possible plans
in a decision tree type structure (Kabanza et al. 2010).

The decision tree machine learning method used
by Weber and Mateas (2009) is another example of
intended deductive plan recognition. Using training
data of building construction orders and timings
that have been extracted from a large selection of
StarCraft replay files, it creates a decision tree to pre-
dict which midgame strategy is being demonstrated.
The replays are automatically given their correct clas-
sification through a rule set based upon the build
order. The learning process was also carried out with
a nearest neighbor algorithm and a nonnested gen-
eralized exemplars algorithm. The resulting models
were then able to predict the build order from
incomplete information, with the nearest neighbor
algorithm being most robust to incomplete informa-
tion (Weber and Mateas 2009).

Abductive
Abductive plan recognition identifies plans by mak-
ing assumptions about the situation that are suffi-
cient to explain the observations. The GDA system
described by Weber, Mateas, and Jhala (2010) is an
example of intended abductive plan recognition in
StarCraft, where expectations are formed about the
result of actions, and unexpected events are account-
ed for as discrepancies. The planner handles discrep-
ancies by choosing from a set of predefined explana-
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tions that give possible reasons for discrepancies and
create new goals to compensate for the change in
assumed situation. This system required substantial
domain engineering in order to define all of the pos-
sible goals, expectations, and explanations necessary
for a domain as complex as StarCraft.

Later work added the ability for the GDA system to
learn domain knowledge for StarCraft by analyzing
replays offline (Weber, Mateas, and Jhala 2012). In
this modified system, a case library of sequential
game states was built from the replays, with each case
representing the player and opponent states as

numerical feature vectors. Then case-based goal for-
mulation was used to produce goals at run time. The
system forms predictions of the opponent’s future
state (referred to as explanations in the article) by
finding a similar opponent state to the current oppo-
nent state in the case library, looking at the future of
the similar state to find the difference in the feature
vectors over a set period of time, and then applying
this difference to the current opponent state to pro-
duce an expected opponent state. In a similar man-
ner, it produces a goal state by finding the expected
future player state, using the predicted opponent

Articles

92 AI MAGAZINE

Figure 11. New Observations Update an Opponent’s Possible Plan Execution Statuses to 
Determine Which Plans Are Potentially Being Followed.

(Kabanza et al. 2010).
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state instead of the current state in order to find
appropriate reactions to the opponent. Expectations
are also formed from the case library, using changes
in the opponent state to make predictions about
when new types of units will be produced. When an
expectation is not met (within a certain tolerance for
error), a discrepancy is created, triggering the system
to formulate a new goal. The resulting system
appeared to show better results in testing than the
previous ones, but further testing is needed to deter-
mine how effectively it adapts to unexpected situa-
tions (Weber, Mateas, and Jhala 2012).

Probabilistic
Probabilistic plan recognition makes use of statistics
and expected probabilities to determine the most
likely future outcome of a given situation. Synnaeve
and Bessière (2011a), Dereszynski et al. (2011), and
Hostetler et al. (2012) carry out keyhole probabilistic
plan recognition in StarCraft by examining build
orders from professional replays, without any prior
knowledge of StarCraft build orders. This means they
should require minimal work to adapt to changes in
the game or to apply to a new situation, because they
can learn directly from replays without any human
input. The models learned can then be used to pre-
dict unobserved parts of the opponent’s current state,
or the future strategic direction of a player, given the
player’s current and past situations. Alternatively,
they can be used to recognize an unusual strategy
being used in a game. The two approaches differ in
the probabilistic techniques that are used, the scope
in which they are applied, and the resulting predic-
tive capabilities of the systems.

Dereszynski et al. (2011) use hidden Markov mod-
els to model the player as progressing through a
series of states, each of which has probabilities for
producing each unit and building type, and proba-
bilities for which state will be transitioned to next.
The model is applied to one of the sides in just one
of the six possible race matchups, and to only the
first seven minutes of game play, because strategies
are less dependent on the opponent at the start of
the game. State transitions happen every 30 seconds,
so the timing of predicted future events can be easi-
ly found, but it is too coarse to capture the more fre-
quent events, such as building new worker units.
Without any prior information, it is able to learn a
state transition graph that closely resembles the
commonly used opening build orders (figure 12), but
a thorough analysis and evaluation of its predictive
power is not provided (Dereszynski et al. 2011).

Hostetler et al. (2012) extend previous work by
Dereszynski et al. (2011) using a dynamic Bayesian
network model for identifying strategies in StarCraft.
This model explicitly takes into account the recon-
naissance effort made by the player — measured by
the proportion of the opponent’s main base that has
been seen — in order to determine whether a unit or
building was not seen because it was not present, or
because little effort was made to find it. This means
that failing to find a unit can actually be very inform-
ative, provided enough effort was made. The model is
also more precise than prior work, predicting exact
counts and production of each unit and building
type each 30-second time period, instead of just pres-
ence or absence. Production of units and buildings
each time period is dependent on the current state,
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Figure 12. State Transition Graph.

As learned in Dereszynski et al. (2011), showing transitions with probability at least 0.25 as solid edges, and higher-probability transitions
with thicker edges. Dotted edges are low-probability transitions shown to make all nodes reachable. Labels in each state are likely units to
be produced, while labels outside states are a human analysis of the strategy exhibited. (Dereszynski et al. 2011).
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based on a hidden Markov model as in Dereszynski et
al. (2011). Again, the model was trained and applied
to one side in one race matchup, and results are
shown for just the first seven minutes of game play.
For predicting unit quantities, it outperforms a base-
line predictor, which simply predicts the average for
the given time period, but only after reconnaissance
has begun. This highlights a limitation of the model:
it cannot differentiate easily between sequential time
periods with similar observations, and therefore has
difficulty making accurate predictions for during and
after such periods. This happens because the similar
periods are modeled as a single state that has a high
probability of transitioning to the same state in the
next period. For predicting technology structures, the
model seems to generally outperform the baseline,
and in both prediction tasks it successfully incorpo-
rates negative information to infer the absence of
units (Hostetler et al. 2012).

Synnaeve and Bessière (2011a) carry out a similar
process using a Bayesian model instead of a hidden
Markov model. When given a set of thousands of
replays, the Bayesian model learns the probabilities
of each observed set of buildings existing at one-sec-
ond intervals throughout the game. These timings
for each building set are modeled as normal distribu-
tions, such that few or widely spread observations
will produce a large standard deviation, indicating
uncertainty (Synnaeve and Bessière 2011a). Given a
(partial) set of observations and a game time, the
model can be queried for the probabilities of each
possible building set being present at that time. Alter-
natively, given a sequence of times, the model can be
queried for the most probable building sets over
time, which can be used as a build order for the agent
itself (Synnaeve and Bessière 2011a).

The model was evaluated and shown to be robust
to missing information, producing a building set
with a little over one building wrong, on average,
when 80 percent of the observations were randomly
removed. Without missing observations and allow-
ing for one building wrong, it was able to predict
almost four buildings into the future, on average
(Synnaeve and Bessière 2011a).

Case Based
Case-based plan recognition may also be carried out
using case-based reasoning as a basis. CBR works by
storing cases that represent specific knowledge of a
problem and solution, and comparing new problems
to past cases in order to adapt and reuse past solu-
tions (Aamodt and Plaza 1994). It is commonly used
for learning strategic play in RTS games because it
can capture complex, incomplete situational knowl-
edge gained from specific experiences to attempt to
generalize about a very large problem space, without
the need to transform the data (Aamodt and Plaza
1994; Floyd and Esfandiari 2009; Sánchez-Pelegrín,
Gómez-Martín, and Díaz-Agudo 2005).

Hsieh and Sun (2008) use CBR to perform keyhole
recognition of build orders in StarCraft by analyzing
replays of professional players, similar to Synnaeve
and Bessière (2011a) above. Hsieh and Sun (2008) use
the resulting case base to predict the performance of
a build order by counting wins and losses seen in the
professional replays, which allows the system to pre-
dict which build order is likely to be more successful
in particular situations.

In RTS games, CBR is often used not only for plan
recognition but also as part of a more general method
for learning actions and the situations in which they
should be applied. An area of growing interest for
researchers involves learning to play RTS games from
a demonstration of correct behavior. These learning
from demonstration techniques often use CBR and
CBP, but they are discussed in their own section,
which follows.

Although much of the recent work using CBR for
RTS games learns from demonstration, Baumgarten,
Colton, and Morris (2009) use CBR directly without
observing human play. Their system uses a set of met-
rics to measure performance, in order to learn to play
the strategy game DEFCON17 through an iterative
process similar to RL. The system uses cases of past
games played to simultaneously learn which strate-
gic moves it should make as well as which moves its
opponent is likely to make. It abstracts lower-level
information about unit and structure positions by
using influence maps for threats and opportunities in
an area and by grouping units into fleets and
metafleets. In order for it to make generalizations
about the cases it has stored, it groups the cases sim-
ilar to its current situation using a decision tree algo-
rithm, splitting the cases into more or less successful
games based on game score and hand-picked metrics.
A path through the resulting decision tree is then
used as a plan that is expected to result in a high-scor-
ing game. Attribute values not specified by the select-
ed plan are chosen at random, so the system tries dif-
ferent moves until an effective move is found. In this
way, it can discover new plans from an initially emp-
ty case base.

Learning by Observation
For a domain as complex as RTS games, gathering
and maintaining expert knowledge or learning it
through trial and error can be a very difficult task, but
games can provide simple access to (some of) this
information through replays or traces. Most RTS
games automatically create traces, recording the
events within a game and the actions taken by the
players throughout the game. By analyzing the
traces, a system can learn from the human demon-
stration of correct behavior, instead of requiring pro-
grammers to specify its behavior manually. This
learning solely by observing the expert’s external
behavior and environment is usually called learning
by observation, but is also known as apprenticeship
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learning, imitation learning, behavioral cloning, pro-
gramming by demonstration, and even learning
from demonstration (Ontañón, Montana, and Gon-
zalez 2011). These learning methods are analogous to
the way humans are thought to accelerate learning
through observing an expert and emulating their
actions (Mehta et al. 2009).

Although the concept can be applied to other
areas, learning by observation (as well as learning
from demonstration, discussed in the next section) is
particularly applicable for CBR systems. It can reduce
or remove the need for a CBR system designer to
extract knowledge from experts or think of potential
cases and record them manually (Hsieh and Sun
2008; Mehta et al. 2009). The replays can be trans-
formed into cases for a CBR system by examining the
actions players take in response to situations and
events, or to complete certain predefined tasks.

In order to test the effectiveness of different tech-
niques for learning by observation, Floyd and Esfan-
diari (2009) compared CBR, decision trees, support
vector machines, and naïve Bayes classifiers for a task
based on RoboCup robot soccer.18 In this task, classi-
fiers were given the perceptions and actions of a set
of RoboCup players and were required to imitate
their behavior. There was particular difficulty in
transforming the observations into a form usable by
most of the the classifiers, as the robots had an
incomplete view of the field, so there could be very
few or many objects observed at a given time (Floyd
and Esfandiari 2009). All of the classifiers besides k-
nearest neighbor — the classifier commonly used for
CBR — required single-valued features or fixed-size
feature vectors, so the missing values were filled with
a placeholder item in those classifiers in order to
mimic the assumptions of k-nearest neighbor. Classi-
fication accuracy was measured using the f-measure,
and results showed that the CBR approach outper-
formed all of the other learning mechanisms (Floyd
and Esfandiari 2009). These challenges and results
may explain why almost all research in learning by
observation and learning from demonstration in the
complex domain of RTS games uses CBR as a basis.

Bakkes, Spronck, and van den Herik (2011)
describe a case-based learning by observation system
that is customized to playing Spring RTS games at a
strategic level (figure 13), while the tactical decision
making is handled by a script. In addition to regular
CBR, with cases extracted from replays, they record a
fitness value with each state, so the system can inten-
tionally select suboptimal strategies when it is win-
ning in order to make the game more evenly
matched and more fun to play. This requires a good
fitness metric for the value of a state, which is diffi-
cult to create for an RTS. In order to play effectively,
the system uses hand-tuned feature weights on a cho-
sen set of features, and chooses actions that are
known to be effective against its expected opponent.
The opponent strategy model is found by comparing

observed features of the opponent to those of oppo-
nents in its case base, which are linked to the games
where they were encountered. In order to make case
retrieval efficient for accessing online, the case base
is clustered and indexed with a fitness metric while
offline. After playing a game, the system can add the
replay to its case base in order to improve its knowl-
edge of the game and opponent. A system capable of
controlled adaptation to its opponent like this could
constitute an interesting AI player in a commercial
game (Bakkes, Spronck, and van den Herik 2011).

Learning by observation also makes it possible to
create a domain-independent system that can sim-
ply learn to associate sets of perceptions and actions,
without knowing anything about their underlying
meaning (Floyd and Esfandiari 2010; 2011a). How-
ever, without domain knowledge to guide decisions,
learning the correct actions to take in a given situa-
tion is very difficult. To compensate, the system
must process and analyze observed cases, using tech-
niques like automated feature weighting and case
clustering in order to express the relevant knowl-
edge.

Floyd and Esfandiari (2011a) claim their system is
capable of handling complex domains with partial
information and nondeterminism, and show it to be
somewhat effective at learning to play robot soccer
and Tetris, but it has not yet been applied to a
domain as complex as StarCraft. Their system has
more recently been extended to be able to compare
perceptions based on the entire sequence of percep-
tions — effectively a trace — so that it is not limited
to purely reactive behavior (Floyd and Esfandiari
2011b). In the modified model, each perceived state
contains a link to the previous state, so that when
searching for similar states to the current state, the
system can incrementally consider additional past
states to narrow down a set of candidates. By also
considering the similarity of actions contained in the
candidate cases, the system can stop comparing past
states when all of the candidate cases suggested a
similar action, thereby minimizing wasted process-
ing time. In an evaluation where the correct action
was dependent on previous actions, the updated sys-
tem produced a better result than the original, but it
is still unable to imitate an agent whose actions are
based on a hidden internal state (Floyd and Esfandi-
ari 2011b).

Learning from Demonstration
Instead of learning purely from observing the traces
of interaction of a player with a game, the traces may
be annotated with extra information — often about
the player’s internal reasoning or intentions — mak-
ing the demonstrations easier to learn from, and pro-
viding more control over the particular behaviors
learned. Naturally, adding annotations by hand
makes the demonstrations more time-consuming to
author, but some techniques have been developed to
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automate this process. This method of learning from
constructed examples is known as learning from
demonstration.

Given some knowledge about the actions and tasks
(things that we may want to complete) in a game,
there are a variety of different methods that can be
used to extract cases from a trace for use in learning
by observation or learning from demonstration sys-
tems. Ontañón (2012) provides an overview of sev-
eral different case acquisition techniques, from the
most basic reactive and monolithic learning
approaches to more complex dependency graph
learning and time-span analysis techniques. Reactive
learning selects a single action in response to the cur-
rent situation, while monolithic sequential learning
selects an entire game plan; the first has issues with
preconditions and the sequence of actions, whereas
the second has issues managing failures in its long-
term plan (Ontañón 2012). Hierarchical sequential
learning attempts to find a middle ground by learn-
ing which actions result in the completion of partic-
ular tasks, and which tasks’ actions are subsets of oth-
er tasks’ actions, making them subtasks. That way,
ordering is retained, but when a plan fails it must
only choose a new plan for its current task, instead of
for the whole game (Ontañón 2012).

Sequential learning strategies can alternatively use

dependency graph learning, which uses known pre-
conditions and postconditions, and observed order-
ing of actions, to find a partial ordering of actions
instead of using the total ordered sequence exactly as
observed. However, these approaches to determining
subtasks and dependencies produce more dependen-
cies than really exist, because independent actions or
tasks that coincidentally occur at a similar time will
be considered dependent (Ontañón 2012). The sur-
plus dependencies can be reduced using time-span
analysis, which removes dependencies where the
duration of the action indicates that the second
action started before the first one finished. In an
experimental evaluation against static AI, it was
found that the dependency graph and time-span
analysis improved the results of each strategy they
were applied to, with the best results being produced
by both techniques applied to the monolithic learn-
ing strategy (Ontañón 2012).

Mehta et al. (2009) describe a CBR and planning
system that is able to learn to play the game Wargus
from human-annotated replays of the game (figure
14). By annotating each replay with the goals that the
player was trying to achieve at the time, the system
can group sequences of actions into behaviors to
achieve specific goals, and learn a hierarchy of goals
and their possible orderings. The learned behaviors
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Figure 13. Learning by Observation Applied to an RTS.

Offline processing generalizes observations, initialization chooses an effective strategy, and online adaptation ensures cases are appropri-
ate in the current situation. Adapted from Bakkes, Spronck, and van den Herik (2011).
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are stored in a behavior base that can be used by the
planner to achieve goals while playing the game. This
results in a system that requires less expert program-
mer input to develop a game AI because it may be
trained to carry out goals and behavior (Mehta et al.
2009).

The system described by Weber and Ontañón
(2010) analyzes StarCraft replays to determine the
goals being pursued by the player with each action.
Using an expert-defined ontology of goals, the sys-
tem learns which sequences of actions lead to goals
being achieved, and in which situations these actions
occurred. Thus, it can automatically annotate replays
with the goals being undertaken at each point, and
convert this knowledge into a case base that is usable
in a case-based planning system. The case-based
planning system produced was able to play games of
StarCraft by retrieving and adapting relevant cases,
but was unable to beat the in-built scripted StarCraft
AI. Weber and Ontañón (2010) suggest that the sys-
tem’s capability could be improved using more
domain knowledge for comparing state features and
identifying goals, which would make it more specific
to StarCraft but less generally applicable.

An alternative to analyzing traces is to gather the
cases in real time as the game is being played and the
correct behavior is being demonstrated — known as

online learning. This method has been used to train
particular desired behaviors in robots learning robot
soccer, so that humans could guide the learning
process and apply more training if necessary (Groll-
man and Jenkins 2007). The training of particular
desired behaviors in this way meant that fewer train-
ing examples could be covered, so while the robot
could learn individual behaviors quickly, it required
being set into explicit states for each behavior (Groll-
man and Jenkins 2007). To the authors’ knowledge,
such an approach has not been attempted in RTS
games.

Open Research Areas
As well as the areas covered above, most of which are
actively being researched, there are some areas that
are applicable to RTS AI but seem to have been given
little attention. The first of these areas is found by
examining the use of game AI in industry and how
it differs from academic AI. The next area — multi-
scale AI — has had a few contributions that have yet
to be thoroughly examined, while the third — coop-
eration — is all but absent from the literature. Each
of these three areas raises problems that are chal-
lenging for AI agents, and yet almost trivial for a
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Figure 14. General Architecture for a Learning by Demonstration System. 

Adapted from Mehta et al. (2009).
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human player. The final section notes the inconsis-
tency in evaluation methods between various papers
in the field and calls for a standardized evaluation
method to be put into practice.

Game AI in Industry
Despite the active research in the RTS AI field, there
seems to be a large divide between the academic
research, which uses new, complex AI techniques,
and the games industry, which usually uses older and
much simpler approaches. By examining the differ-
ences in academic and industry use of AI, we see new
opportunities for research that may benefit both
groups.

Many papers reason that RTS AI research will be
useful for new RTS game development by reducing
the work involved in creating AI opponents, or by
allowing game developers to create better AI oppo-
nents (Baekkelund 2006; Dill 2006; Mehta et al.
2009; Ontañón 2012; Ponsen et al. 2005; Tozour
2002; Woodcock 2002). For example, the RTS game
DEFCON was given enhanced, learning AI through
collaboration with the Imperial College of London
(discussed earlier) (Baumgarten, Colton, and Morris
2009). Similarly, Kohan II: Kings of War was pro-
duced with flexible AI through a dynamic goal-selec-
tion mechanism based on complex priority calcula-
tions (discussed earlier) (Dill 2006). More  recently,
the currently in development RTS game Planetary
Annihilation19 is using flow fields for effective unit
pathfinding with large numbers of units, and neural
networks for controlling squads of units.20

In practice, however, there is very low rate of
industry adoption of academic game AI research. It is
typical for industry game producers to specify and
encode manually the exact behavior of their agents
instead of using learning or reasoning techniques
(Mehta et al. 2009; Tozour 2002; Woodcock 2002).
Older techniques such as scripting, finite state
machines, decision trees, and rule-based systems are
still the most commonly used (Ontañón 2012;
Tozour 2002; Woodcock 2002)20 — for example, the
built-in AI of StarCraft uses a static script that choos-
es randomly among a small set of predetermined
behaviors (Huang 2011). These techniques result in
game AI that often has predictable, inflexible behav-
ior, is subject to repeatable exploitation by humans,
and doesn’t learn or adapt to unforeseen situations
or events (Dill 2006; Huang 2011; Ontañón 2012;
Woodcock 2002).

There are two main reasons for this lack of adop-
tion of academic AI techniques. Firstly, there is a
notable difference in goals between academe and
industry. Most academic work focuses on trying to
create rational, optimal agents that reason, learn, and
react, while the industry aims to create challenging
but defeatable opponents that are fun to play against,
usually through entirely predefined behavior (Baum-
garten, Colton, and Morris 2009; Davis 1999; Lidén

2004; Ontañón 2012; Tozour 2002). The two aims are
linked, as players find a game more fun when it is rea-
sonably challenging (Hagelbäck and Johansson
2009),21 but this difference in goals results in very dif-
ferent behavior from the agents. An agent aiming to
play an optimal strategy — especially if it is the same
optimal strategy every game — is unlikely to make a
desirable RTS opponent, because humans enjoy find-
ing and taking advantage of opportunities and oppo-
nent mistakes.22 An optimal agent is also trying to
win at all costs, while the industry really wants game
AI that is aiming to lose the game, but in a more
humanlike way (Davis 1999). 22 Making AI that acts
more humanlike and intelligent — even just in spe-
cific circumstances through scripted behaviors — is
important in the industry as it is expected to make a
game more fun and interesting for the players (Lidén
2004; Scott 2002; Woodcock 2002).

The second major reason for the lack of adoption
is that there is little demand from the games industry
for new AI techniques. Industry game developers do
not view their current techniques as an obstacle to
making game AI that is challenging and fun to play
against, and note that it is difficult to evaluate the
potential of new, untested techniques (Woodcock
2002).20, 22 Industry RTS games often allow AI oppo-
nents to cheat in order to make them more challeng-
ing, or emphasize playing against human opponents
instead of AI (Davis 1999; Laird and van Lent 2001;
Synnaeve and Bessière 2011a). Additionally, game
development projects are usually under severe time
and resource constraints, so trying new AI techniques
is both costly and risky (Buro 2004; Tozour 2002).20

In contrast, the existing techniques are seen as pre-
dictable, reliable, and easy to test and debug (Dill
2006; Baekkelund 2006; Tozour 2002; Woodcock
2002).22 Academic AI techniques are also seen as dif-
ficult to customize, tune, or tweak in order to perform
important custom scripted tasks, which scripted AI is
already naturally suited to doing.20, 22

Some new avenues of research come to light con-
sidering the use of game AI in industry. Most impor-
tantly, creating AI that is more humanlike, which
may also make it more fun to play against. This task
could be approached by making an RTS AI that is
capable of more difficult human interactions. Com-
pared to AI, human players are good at working
together with allies, using surprises, deception, dis-
tractions and coordinated attacks, planning effective
strategies, and changing strategies to become less pre-
dictable (Scott 2002). Players that are able to do at
least some of these things appear to be intelligent and
are more fun for human players to play against (Scott
2002). In addition, being predictable and exploitable
in the same fashion over multiple games means that
human players do not get to find and exploit new
mistakes, removing a source of enjoyment from the
game. AI can even make mistakes and still appear
intelligent as long as the mistake appears plausible in
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the context of the game — the sort of mistakes that a
human would make (Lidén 2004).

An alternative way to create AI that is more
humanlike is to replicate human play styles and
skills. Enabling an AI to replicate particular strategies
— for example a heavily defensive turtle strategy or
heavily offensive rush strategy — would give the AI
more personality and allow players to practice
against particular strategies.22 This concept has been
used in industry AI before (Dill 2006) but may be dif-
ficult to integrate into more complex AI techniques.
A system capable of learning from a human player —
using a technique such as learning from demonstra-
tion (see the section on this topic), likely using
offline optimization — could allow all or part of the
AI to be trained instead of programmed (Floyd and
Esfandiari 2010; Mehta et al. 2009). Such a system
could potentially copy human skills — like unit
micromanagement or building placement — in order
to keep up with changes in how humans play a game
over time, which makes it an area of particular inter-
est to the industry.22

Evaluating whether an RTS AI is humanlike is
potentially an issue. For FPS games, there is an AI
competition, BotPrize,20 for creating the most
humanlike bots (AI players), where the bots are
judged on whether they appear to be a human play-
ing the game — a form of Turing test.24 This test has
finally been passed in 2012, with two bots judged
more likely to be humans than bots for the first time.
Appearing humanlike in an RTS would be an even
greater challenge than in an FPS, as there are more
ways for the player to act and react to every situation,
and many actions are much more visible than the
very fast-paced transient actions of an FPS. However,
being humanlike is not currently a focus of any Star-
Craft AI research, to the authors’ knowledge,
although it has been explored to a very small extent
in the context of some other RTS games. It is also not
a category in any of the current StarCraft AI compe-
titions. The reason for this could be the increased dif-
ficulty of creating a human level agent for RTS games
compared with FPS games, however, it may simply be
due to an absence of goals in this area of game AI
research. A Turing Test similar to BotPrize could be
designed for StarCraft bots by making humans play
in matches and then decide whether their opponent
was a human or a bot. It could be implemented fair-
ly easily on a competitive ladder like ICCup by sim-
ply allowing a human to join a match and asking
them to judge the humanness of their opponent dur-
ing the match. Alternatively, the replay facility in
StarCraft could be used to record matches between
bots and humans of different skill levels, and other
humans could be given the replays to judge the
humanness of each player. Due to the popularity of
StarCraft, expert participants and judges should be
relatively easy to find.

A secondary avenue of research is in creating RTS

AI that is more accessible or useful outside of acad-
eme. This can partially be addressed by simply con-
sidering and reporting how often the AI can be relied
upon to behave as expected, how performant the
system is, and how easily the system can be tested
and debugged. However, explicit research into these
areas could yield improvements that would benefit
both academe and industry. More work could also be
done to investigate how to make complex RTS AI sys-
tems easier to tweak and customize, to produce spe-
cific behavior while still retaining learning or rea-
soning capabilities. Industry feedback indicates it is
not worthwhile to adapt individual academic AI
techniques in order to apply them to individual
games, but it may become worthwhile if techniques
could be reused for multiple games in a reliable fash-
ion. A generalized RTS AI middleware could allow
greater industry adoption — games could be more
easily linked to the middleware and then tested with
multiple academic techniques — as well as a wider
evaluation of academic techniques over multiple
games. Research would be required in order to find
effective abstractions for such a complex and varied
genre of games, and to show the viability of this
approach.

Multiscale AI
Due to the complexity of RTS games, current bots
require multiple abstractions and reasoning mecha-
nisms working in concert in order to play effectively
(Churchill and Buro 2012; Weber et al. 2010; Weber,
Mateas, and Jhala 2011a). In particular, most bots
have separate ways of handling tactical and strategic
level decision making, as well as separately manag-
ing resources, construction, and reconnaissance.
Each of these modules faces an aspect of an interre-
lated problem, where actions taken will have long-
term strategic trade-offs affecting the whole game, so
they cannot simply divide the problem into isolated
or hierarchical problems. A straightforward hierar-
chy of command — like in a real-world military — is
difficult in an RTS because the decisions of the top-
level commander will depend on, and affect, multi-
ple subproblems, requiring an understanding of each
one as well as how they interact. For example,
throughout the game, resources could be spent on
improving the resource generation, training units for
an army, or constructing new base infrastructure,
with each option controlled by a different module
that cannot assess the others’ situations. Notably,
humans seem to be able to deal with these problems
very well through a combination of on- and offline,
reactive, deliberative, and predictive reasoning.

Weber et al. (2010) define the term multiscale AI
problems to refer to these challenges, characterized by
concurrent and coordinated goal pursuit across mul-
tiple abstractions. They go on to describe several dif-
ferent approaches they are using to integrate parts of
their bot. First is a working memory or shared black-
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board concept for indirect communication between
their modules, where each module publishes its cur-
rent beliefs for the others to read. Next, they allow
for goals and plans generated by their planning and
reasoning modules to be inserted into their central
reactive planning system, to be pursued in parallel
with current goals and plans. Finally, they suggest a
method for altered behavior activation, so that mod-
ules can modify the preconditions for defined behav-
iors, allowing them to activate and deactivate behav-
iors based on the situation.

A simpler approach may be effective for at least
some parts of an RTS bot. Synnaeve and Bessière
(2011b) use a higher-level tactical command, such as
scout, hold position, flock, or fight, as one of the
inputs to their micromanagement controller. Simi-
larly, Churchill and Buro (2012) use a hierarchical
structure for unit control, with an overall game com-
mander — the module that knows about the high-
level game state and makes strategic decisions — giv-
ing commands to a macro commander and a combat
commander, each of which give commands to their
subcommanders. Commanders further down the
hierarchy are increasingly focused on a particular
task, but have less information about the overall
game state, so therefore must rely on their parents to
make them act appropriately in the bigger picture.
This is relatively effective because the control of units
is more hierarchically arranged than other aspects of
an RTS. Such a system allows the low-level con-
trollers to incorporate information from their parent
in the hierarchy, but they are unable to react and
coordinate with other low-level controllers directly
in order to perform cooperative actions (Synnaeve
and Bessière 2011b). Most papers on StarCraft AI skirt
this issue by focusing on one aspect of the AI only, as
can be seen in how this review paper is divided into
tactical and strategic decision making sections.

Cooperation
Cooperation is an essential ability in many situa-
tions, but RTS games present a particular complex
environment in which the rules and overall goal are
fixed, and there is a limited ability to communicate
with your cooperative partner(s). It would also be
very helpful in commercial games, as good coopera-
tive players could be used for coaching or team
games. In team games humans often team up to help
each other with coordinated actions throughout the
game, like attacking and defending, even without
actively communicating. Conversely AI players in
most RTS games (including StarCraft) will act seem-
ingly independently of their teammates. A possible
beginning direction for this research could be to
examine some techniques developed for opponent
modeling and reuse them for modeling an ally, thus
giving insight into how the player should act to coor-
dinate with the ally. Alternatively, approaches to
teamwork and coordination used in other domains,

such as RoboCup (Kitano et al. 1998) may be appro-
priate to be adapted or extended for use in the RTS
domain.

Despite collaboration being highlighted as a chal-
lenging AI research problem in Buro (2003), to the
authors’ knowledge just one research publication
focusing on collaborative behavior exists in the
domain of StarCraft (and RTS games in general). Mag-
nusson and Balsasubramaniyan (2012) modified an
existing StarCraft bot to allow both communication
of the bot’s intentions and in-game human control
of the bot’s behavior. It was tested in a small experi-
ment in which a player is allied with the bot, with or
without the communication and control elements,
against two other bots. The players rated the com-
municating bots as more fun to play with than the
noncommunicating bots, and more experienced
players preferred to be able to control the bot while
novice players preferred a noncontrollable bot. Much
more research is required to investigate collaboration
between humans and bots, as well as collaboration
between bots only.

Standardized Evaluation
Despite games being a domain that is inherently suit-
ed to evaluating the effectiveness of the players and
measuring performance, it is difficult to make fair
comparisons between the results of most literature in
the StarCraft AI field.

Almost every paper has a different method for eval-
uating its results, and many of these experiments are
of poor quality. Evaluation is further complicated by
the diversity of applications, as many of the systems
developed are not suited to playing entire games of
StarCraft, but are suited to a specific subproblem.
Such a research community, made up of isolated
studies that are not mutually comparable, was recog-
nized as problematic by Aha and Molineaux (2004).
Their Testbed for Integrating and Evaluating Learn-
ing Techniques (TIELT), which aimed to standardize
the learning environment for evaluation, attempted
to address the problem but unfortunately never
became very widely used.

Partial systems — those that are unable to play a
full game of StarCraft — are often evaluated using a
custom metric, which makes comparison between
such systems nearly impossible. A potential solution
for this would be to select a common set of parts that
could plug in to partial systems and allow them to
function as a complete system for testing. This may
be possible by compartmentalizing parts of an open-
source AI used in a StarCraft AI competition, such as
UAlbertaBot (Churchill and Buro 2012), which is
designed to be modular, or using an add-on library
such as the BWAPI Standard Add-on Library
(BWSAL).25 Alternatively, a set of common tests could
be made for partial systems to be run against. Such
tests could examine common subproblems of an AI
system, such as tactical decision making, planning,
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and plan recognition, as separate suites of tests. Even
without these tests in place, new systems should at
least be evaluated against representative related sys-
tems in order to show that they represent a nontriv-
ial improvement.

Results published about complete systems are sim-
ilarly difficult to compare against one another due to
their varied methods of evaluation. Some of the only
comparable results come from systems demonstrated
against the inbuilt StarCraft AI, despite the fact that
the inbuilt AI is a simple scripted strategy that aver-
age human players can easily defeat (Weber, Mateas,
and Jhala 2010). Complete systems are more effec-
tively tested in StarCraft AI competitions, but these
are run infrequently, making quick evaluation diffi-
cult. An alternative method of evaluation is to auto-
matically test the bots against other bots in a ladder
tournament, such as in the StarCraft Brood War Lad-
der for BWAPI Bots.26 In order to create a consistent
benchmark of bot strength, a suite of tests could be
formed from the top three bots from each of the
AIIDE StarCraft competitions on a selected set of
tournament maps. This would provide enough vari-
ety to give a general indication of bot strength, and
it would allow for results to be compared between
papers and over different years. An alternative to test-
ing bots against other bots is testing them in match-
es against humans, such as how Weber, Mateas, and
Jhala (2010) tested their bot in the ICCup.

Finally, it may be useful to have a standard evalu-
ation method for goals other than finding the AI best
at winning the game. For example, the game indus-
try would be more interested in determining the AI
that is most fun to play against, or the most human-
like. A possible evaluation for these alternate objec-
tives was discussed earlier.

Conclusion
This article has reviewed the literature on artificial
intelligence for real-time strategy games focusing on
StarCraft. It found significant research focus on tacti-
cal decision making, strategic decision making, plan
recognition, and strategy learning. Three main areas
were identified where future research could have a
large positive impact. First, creating RTS AI that is
more humanlike would be an interesting challenge
and may help to bridge the gap between academe
and industry. The other two research areas discussed
were noted to be lacking in research contributions,
despite being highly appropriate for real-time strate-
gy game research: multiscale AI, and cooperation.
Finally, the article finished with a call for increased
rigor and ideally standardization of evaluation meth-
ods, so that different techniques can be compared on
even ground. Overall the RTS AI field is small but
very active, with the StarCraft agents showing con-
tinual improvement each year, as well as gradually
becoming more based upon machine learning, learn-

ing from demonstration, and reasoning, instead of
using scripted or fixed behaviors.

Notes
1. Blizzard Entertainment: StarCraft: blizzard.com/games/
sc/.

2. Wargus: wargus.sourceforge.net.

3. Open RTS: skatgame.net/mburo/orts.

4. Brood War API: code.google.com/p/bwapi.

5. AIIDE StarCraft AI Competition: www.starcraftaicompe-
tition.com.

6. CIG StarCraft AI Competition: ls11-www.cs.uni-dort-
mund.de/rts-competition/. 

7. Mad Doc Software. Website no longer available. 

8. SparCraft: code.google.com/p/sparcraft/.

9.  Blizzard Entertainment: Warcraft III: blizzard.com/
games/war3/.

10.  TimeGate Studios: Kohan II Kings of War: www.
timegate.com/games/kohan-2-kings-of-war.

11. Spring RTS: springrts.com.

12. International Cyber Cup: www.iccup.com.

13. See A. J. Champandard, This Year [2010] in Game AI:
Analysis, Trends from 2010 and Predictions for 2011.
aigamedev.com/open/editorial/2010-retrospective.

14.  Blizzard Entertainment: StarCraft II: blizzard.com/
games/sc2/.

15.  Evolution Chamber: code.google.com/p/evolution-
chamber/.

16. See A. Turner, 2012, Soar-SC:  A Platform for AI Research
in StarCraft:  Brood War github.com/bluechill/Soar-
SC/tree/master/Soar-SC-Papers.

17.  Introversion Software: DEFCON: www.introversion
.co.uk/defcon.

18. RoboCup: www.robocup.org.

19. Uber Entertainment: Planetary Annihilation: www.
uberent.com/pa.

20. Personal communication with M. Robbins, 2013. Rob-
bins is a software engineer at Uber Entertainment, former-
ly game-play engineer at Gas Powered Games.

21. Also see L. Dicken’s 2011 blog, altdevblogaday.com
/2011/05/12/a-difficult-subject/.

22. Personal communication with B. Schwab, 2013. Schwab
is a senior AI/game-play engineer at Blizzard Entertain-
ment.

23. BotPrize: botprize.org.

24. See L. Dicken’s 2011 blog, A Turing Test for Bots. altde-
vblogaday.com/2011/09/09/a-turing-test-for-bots/.

25.  BWAPI Standard Add-on Library: code.google.
com/p/bwsal.

26.  StarCraft Brood War Ladder for BWAPI Bots: bots-
stats.krasi0.com.
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