Entity Type Recognition
for Heterogeneous
Semantic Graphs

B We describe an approach for identi-
fying fine-grained entity types in hetero-
geneous data graphs that is effective for
unstructured data or when the underly-
ing ontologies or semantic schemas are
unknown. Identifying fine-grained enti-
ty types, rather than a few high-level
types, supports coreference resolution in
heterogeneous graphs by reducing the
number of possible coreference relations
that must be considered. Big data prob-
lems that involve integrating data from
multiple sources can benefit from our
approach when the data’s ontologies are
unknown, inaccessible, or semantically
trivial. For such cases, we use super-
vised machine learning to map entity
attributes and relations to a known set
of attributes and relations from appro-
priate background knowledge bases to
predict instance entity types. We evalu-
ated this approach in experiments on
data from DBpedia, Freebase, and
Arnetminer using DBpedia as the back-
ground knowledge base.
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v's: volume, velocity, variety, and veracity (McAfee and

Brynjolfsson 2012). Annotating data elements with
semantic representations can help manage two of them: vari-
ety and veracity. Often what this entails is the integration of
data from different sources whose schemas are unknown,
largely syntactic or very weak, and impossible or difficult to
integrate. Automatically linking data to common semantic
models enhances integration and interoperability, especially
if the semantic models support reasoning. Semantic annota-
tions can also help ensure veracity by detecting violations of
semantic constraints and allowing the application of seman-
tically grounded statistical models.

Often attempts to solve big data integration problems are
addressed by means of schema mappings, record linkage, and
data fusion (Dong and Srivastava 2013). In this regard, coref-
erence resolution becomes a necessity, and often traditional
approaches are not designed to solve these types of integra-
tion problems because they do not account for integrating
data from multiple, and often schemaless, sources.

B ig data is often characterized as data exhibiting the four
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Finding entity mentions and identifying their
types are important steps in many data analysis tasks
including processing structured tables and logs, semi-
structured graphs, and unstructured text. The results
directly support subsequent tasks, such as record
linkage, question answering, coreference resolution,
and ontology mapping. For example, identifying
medical conditions based on symptoms requires inte-
grating medical records from a particular medical
practice, known medical conditions from a trusted
medical knowledge base, and possibly results from a
question-answering system, all of which may or may
not have some underlying ontological structure.
Entity resolution can support the identification of
medical conditions by identifying entities and
matching entities that are likely to be coreferent. In
this example medical conditions are the entities and
their associated symptoms are properties. Identifying
a match between a new instance, that is, the patient’s
list of symptoms and a known medical condition, is
an example of identifying whether they corefer to
each other.

Most natural language analysis systems use lin-
guistic evidence and context to identify entity men-
tion strings and predict their type, typically chosen
from a relatively small number of high-level possibil-
ities, such as person, place, and organization, perhaps
augmented with additional application-specific
types. For many forms of structured and semistruc-
tured data (for example, tables, logs, XML, JSON),
schemas may be unavailable or overly simple and
semantically weak. When working with semantic
graphs, if an ontology is present, the ontology may
explicitly define the entity types. However, in situa-
tions where semantic graphs are not defined onto-
logically or when the data itself does not sufficiently
use the ontology, the types are harder to identify. Lin-
guistic analysis cannot be used in this case since it
relies upon the structure of the sentence to under-
stand the components of the sentence, which is not
present when data is represented as semantic graphs
or a similar representation.

When performing coreference resolution over RDF
data or a similar formalism, the entity types can be
explicitly given in a familiar ontology and their prop-
erties understood, enabling systems to reason about
instance equality (Ferrara et al. 2008, Seddiqui and
Aono 2010, Araujo et al. 2011). When this is not the
case, that is, when the ontologies are not accessible or
not understood or several nonaligned ontologies are
used, direct reasoning about instance equality is dif-
ficult, if not impossible. We believe that this situation
will be common in many big data applications,
where semantic annotations may be relatively simple
and where entities and their schemas can have very
different representations.
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In this work we address identifying fine-grained enti-
ty types as a prefilter for algorithms that determine
which entities in a given heterogeneous data set core-
fer. For example, in the medical domain, for the con-
dition cancer, we would not only identify high-level
cancer types such as carcinoma, sarcoma, leukemia,
lymphoma, and myeloma, and central nervous sys-
tem cancers.! Rather we would also identify more
fine-grained types such as breast cancer and bladder
cancer. Our preliminary experiments show a one-lev-
el-deep identification and our ongoing work will
include experiments that show identification of types
at various levels.

Among linguistic-based entity recognition
approaches, most current research does not address
fine-grained entity type identification. However, it is
often useful to have a more fine-grained understand-
ing of entity types to support efforts in heteroge-
neous data integration. We use a linear approach for
compatibility with big data architectures. With large
knowledge bases there could exist thousands of enti-
ty types; it would be inefficient and unnecessary to
evaluate an instance against each entity type. By
means of information theory and high potential
predicate filtering, we associate each new instance
with a set of high potential candidate entity types,
resulting in a significant reduction in the number of
classifications. The results of our mapping approach
from a single instance to a set of entity types allows
us to cluster candidate coreferent instances by entity

types.

Background

Semantic graphs are graph-based representations that
typically are represented as triples. The resource
description framework (RDF) is commonly used to
describe resources on the web and provides a graph-
based representation (Beckett 2004, Brickley and
Guha 2004).

An RDF graph is a set of triples, each of which has
a subject, predicate, and object. For example, the
DBpedia resource Monaco, Monaco would be the
subject, an attribute such as areaTotal would be the
predicate, and a literal value 1.98 for areaTotal would
be the object. A triple T is represented by a subject s,
a predicate p, and an object o, such that T(s, p, 0),
where o0 is a node, s is a node, and p defines the rela-
tionship between s and o by a URI. Given that a node
can be a URI identifying the node, a literal, or blank,
the following definitions apply: s € (URI U Blank),p
€ (URI) and o € (URI U Blank U Literal) (Beckett 2004,
Brickley and Guha 2004).

Linked open data (LOD) (Bizer 2009) enables one
to make data publicly available and linked to known
data sets. LOD attempts to address this problem of
integrating heterogeneous data, which is an inherent



problem for big data (Bizer et al. 2012). However,
linking to known data sets is a challenge, particular-
ly when the data is heterogeneous. For example, one
data set could represent an attribute using numeric
values, whereas another might use string representa-
tions. In work by Nikolov and colleagues (Nikolov et
al. 2009; Nikolov, Uren, and Motta 2010), they dis-
cuss the heterogeneity problem, how it relates to
coreference resolution, and the need for LOD auto-
matic entity linking. Araujo and colleagues (2011)
also reference the need for an entity mapping solu-
tion that is domain independent.

Ontologies

An ontology can be thought of as a schema and pro-
vides a definition of the data, similar to an entity-
relationship model (Euzenat and Shvaiko 2007). It
includes a vocabulary of terms with specific meaning
(Gomez-Perez, Fernandez-Lopez, and Corcho 2004).
Ontologies play a critical role in the semantic web
(Berners-Lee, Hendler, and Lassila 2001) and can be
used to describe a domain. Typically ontologies use
OWL (Bechhofer et al. 2004) or other languages as a
representation. They define classes, instances, attrib-
utes, and relations (Euzenat and Shvaiko 2007).
Often one will find instance data that is described by
multiple ontologies in addition to RDFE. Ontologies
can be privately defined and not accessible to the
general public or publicly defined. It is common to be
exposed to instances described by ontologies that
cannot be accessed and that require an alternative
method to understand the data.

Comprehensive Knowledge Bases

The development of a comprehensive, general-pur-
pose knowledge base has been a goal of Al researchers
dating back to the CYC project (Lenat, Prakash, and
Shepherd 1985) in the early 1980s. In the past five
years, two important open knowledge bases come
close to realizing CYC'’s vision: DBpedia and Free-
base. DBpedia is a structured representation of
Wikipedia (Auer et al. 2007). The DBpedia knowledge
base provides classification for 3.22 million objects,
which mainly consist of people, locations, organiza-
tions, diseases, species, and creative works.? Freebase
is also a large, structured knowledge base (Bollacker
et al. 2008) with a considerably larger number of top-
ics than DBpedia.

Coreference Resolution

Coreference resolution is the task of determining
which instances in a collection represent the same
real-world entities. It tends to have an O(n?) com-
plexity since each instance needs to be evaluated
with every other instance. Various techniques have
been developed to reduce the number of instances
(McCallum, Nigam, and Ungar 2000; Mayfield et al.
2009; Sleeman and Finin 2010a; Rao, McNamee, and
Dredze 2010; Singh et al. 2011; Uryupina et al. 2011;

Song and Heflin 2011). In our previous work (Slee-
man and Finin 2010b, 2010a) we also used filtering to
reduce the number of candidates for the coreference
resolution algorithm. We often processed data using
ontologies that were not publicly available. Without
an understanding of the ontologies used, it is often
challenging to process data that uses those ontologies
and could negatively affect accuracy.

Problem Definition

Definition 1.
Given a set of instances INST, extracted from a set of
heterogeneous sources SRC, that are not ontologically
defined and not grammatically represented in a sen-
tence, for each instance inst, ... inst,, € INST, we wish
to associate a set of entity types ET, ... ET,

Recognizing semantic graph entities is related to
information-extraction entity recognition, the
process of recognizing entities and their type (for
example, a person, location, or organization) (Rati-
nov and Roth 2009, Nadeau and Sekine 2007). How-
ever, it does not require the entities to be grammati-
cally defined in a sentence structure and it entails the
recognition of fine-grained entities that would be
harder to obtain from a typical information-extrac-
tion system.

Fundamental to our work is understanding the
attributes and relations defined by the instance data.
By classifying the attributes and relations, we relate
unknown attributes and relations to known attrib-
utes and relations. We use this as a means for pre-
dicting entity types among heterogeneous semantic
graphs.

A similar problem arises in work related to database
interoperability (Nottleman and Straccia 2007; Berlin
and Motro 2002; Do, Melnik, and Rahm 2003) and
ontology matching (Albagli, Ben-Eliyahu-Zohary,
and Shimony 2012; Mitra, Noy, and Jaiswal 2005). In
both, integrating heterogeneous data drawn from dif-
ferent repositories with different schemas is difficult
simply because it is hard to establish that an attribute
or relation in one schema is the same (or nearly the
same) as an attribute or relation in another (Jaiswal,
Miller, and Mitra 2010).

LOD (Bizer 2009) has specifically addressed the issue
of linking heterogeneous structured data in RDF to
enable interoperability. In order to add an RDF data
set to a LOD collection, we represent the information
as RDF and then link its elements (classes, properties,
and individuals) to known elements elsewhere in the
collection. Though the LOD cloud collection has
grown significantly, the total number of linked data
sets is still relatively small (about 300)3 and the
degree of interlinking often modest. Given the
amount of data both available online and not avail-
able online, this number indicates that most reposi-
tories are still not linked to significant LOD collec-
tions and it is likely that these repositories use
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custom schemas.

In many popular knowledge bases such as DBpe-
dia, entity types are not always present in the data,
even with a sufficiently defined ontology present.
Recent research by Paulheim and Bizer (2013) found
DBpedia types were only 63 percent complete with
2.7 million missing types.

Shvaiko and Euzenat (2008) described challenges
in ontology matching where one such challenge is
missing context. Couple the absence of context with
opaquely defined attributes and often ontologies are
hard to align.

Related Work

The recent work by Paulheim and Bizer (2013) tack-
les the problem of identifying entity types absent in
instance data by inferring types based on existing
type definitions. They assign type probabilities to
indicate the likelihood of the assertion and use these
as weights to establish which relations provide the
best evidence for the type assertion. Their approach
differs from ours in that they use link analysis to
develop their model whereas we do consider the links
between graphs but we do not rely upon this alone.
Rather we build a dictionarylike structure that we
then try to map to evaluated instances. Paulheim and
Bizer work with ontologies where type definitions
exist; we specifically address the issue of identifying
types when the ontologies are either not present or
insufficiently defined.

Nikolov, Uren, and Motta (2010) describe the prob-
lem of mapping heterogeneous data where often
“existing repositories use their own schemas.” They
discuss how this makes coreference resolution diffi-
cult, since similarity evaluation is harder to perform
when attribute mappings are unclear. They take
advantage of linked data and knowledge of relation-
ships between instances to support schema-level
mappings. However, if a repository is not linked to
an appropriate LOD collection, this method is not
feasible. We address this issue of custom schemas and
their impact on coreference resolution by mapping
attributes to a known set of attributes for various
entity types.

Early work by Berlin and Motro (2002) addressed
the problem of database mapping using machine
learning. Their Automatch system used machine
learning to build a classifier for schema matching
using domain experts to map attributes to a common
dictionary. The approach performed well, achieving
performance exceeding 70 percent measured as the
harmonic mean of the soundness and the complete-
ness of the matching process. We build on this idea,
using the dictionary mapping concept generated
from DBpedia through a process guided by informa-
tion gain.

Work by Reeve and Han (2005) provides a survey
related to semantic annotation that is more closely
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related to our work. They describe and benchmark
methods designed for unstructured text comple-
mented with the output of information-extraction
tools to construct mappings. This differs from our
approach in that we start from the graphs themselves
without the raw text and information-extraction
data and metadata. This is a key distinction since
using the graphs alone can b more limiting. The
benchmark compared various annotation tools using
annotation recall and annotation precision, which
we also will use to measure our entity typing per-
formance.

Recent research by Suchanek, Abiteboul, and
Senellart (2012) describes their approach, PARIS, for
aligning ontologies. This work uses string equality
and normalization measures and also takes the
approach of only using positive evidence. Again our
goal was to be domain independent, such that one
could use a data set to build the dictionary of types
they wish to recognize then apply our mapping
process to map to these dictionaries. We use tech-
niques more akin to traditional named entity recog-
nition to perform the task. This distinguishes our
work from much of the ontology mapping research.

Bootstrapping to a Well-Defined
Knowledge Base

In order to assign entity types to new entity
instances, we use a known knowledge base and build
a model of this information. By bootstrapping to a
known knowledge base, we ground unknown
instance data to a known definition. For example,
using the medical domain, if we wanted to identify
different types of leukemia, our bootstrapping
knowledge would have entities, properties, and rela-
tions defined that represent leukemia. If we process
data that entails medical information regarding
many types of cancers, we would map to our
leukemia knowledge base to try to identify specific
leukemia cancers. Since there are different types of
leukemia, we would attempt to identify the
unknown cancers with the types defined in our
leukemia knowledge base.

Definition 2. Unknown to Known Type Map

Given a set of known entity types ET extracted from a

well-defined knowledge base KB, we create a boot-

strapped system that looks to identify unknown enti-

ty types based on ET. Each type et; ... et, € ET is

defined based on a set of predicates EP, ... EP,, that is,
attributes and relations.

We bootstrap to a large well-defined knowledge
base to define our set of entity types. In our experi-
ments we used DBpedia but our approach is flexible
enough to work with any well-defined knowledge
base. We used the DBpedia ontology itself to build a
model of the entity types. The model includes equiv-
alence relationships, hierarchical relationships, and
pattern similarity relationships. We use this model
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Figure 1. Mapping Entity Types Between Data Sources.

during evaluation to expand the number of potential
entity types for a candidate and to aide in the pre-
diction of entity types when an entity is not classified
as any of the known types. Entities defined in DBpe-
dia typically are associated with a number of entity
types. This information allows us to infer types when
information is not present.

Predicate Filtering

Fundamental to our work is mapping predicates asso-
ciated with known types to predicates of unknown
types. Figure 1 shows an example of mapping
between video game definitions. However, evaluating
a set of instance predicates with all possible predi-
cates in the knowledge base is costly and unneces-
sary. Based on the model we define during boot-

strapping, when we process a new instance we eval-
uate its predicates with high potential predicates in
our model.

Definition 3. High Potential Predicates

Given an entity type knowledge base KB, with a set of
entity types ET, where each type et, ... et, € ET is
defined by EP, ... EP,. From this overall distribution
of predicates, we define a subset of predicates H P E P
and link HP E P to ET.

Definition 4. Instance to
High Potential Predicate Link

Given a set of instances INST, each instance inst, ...
inst,, € INST is defined by a set of predicates IP, ...
IP,,, which is then evaluated against H P E P. Each inst;
.. inst, € INST is then linked with a set of high
potential candidate entity types CET, ... CET,
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Instance Predicate
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Figure 2. Mapping Instance Predicates.

For example, a new instance with a set of predicates
will result in the mappings in figure 2 based on pred-
icate filter and predicate mapping.

Entity types associated with the mapped predicates
are then candidates for type matching. We are able to
evaluate a smaller selection of entity types without
evaluating each new instance with every other
instance. Ongoing work will quantitatively show the
impact of our method on computation time. We use
this approach as a prefilter to coreference resolution,
reducing the number of instances that need to be
evaluated without incurring a cost that is equal to the
n? computation time cost of the coreference resolu-
tion algorithm. This prefiltering is beneficial to the
coreference resolution algorithm because it partitions
the instances into smaller clusters such that the
instances within a cluster have a higher likelihood of
being coreferent.

The evaluation of each instance with each poten-
tial entity type candidate results in the features used
to build a supervised classification model. We per-
form the same mapping approach for unlabeled test
data and classify these instances using the supervised
model.
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Feature Reduction and
Information Gain

Information gain is one of the measures used to
define the HPEP. It is also used when evaluating an
instance with a candidate entity type. In order to cre-
ate the mappings defined in figure 2, we start with a
set of predicates that have high information gain.
Using information gain we filter predicates that are
to be mapped to instance attributes. Ongoing
research will evaluate the effects of information gain
thresholding as a means to filter predicates.

Given our set of types S and their set of predicates P,
we calculate information gain and associate a weight
for each predicate € P.

Gain(S, P) = Entropy(S) - E MEntropy(Sv) (1)

vEValues(P) |S|

Where p is the probability of the value x,.

Entropy(S) ==, p(x)log, p(x,) )



Mapping

The concept of mapping to a common set of attrib-
utes is similar to database mapping and ontology
alignment research (Nottleman and Straccia 2007;
Berlin and Motro 2002; Mitra, Noy, and Jaiswal 2005;
Albagli, Ben-Eliyahu-Zohary, and Shimony 2012). A
selection of this work is discussed in more detail in
the Related Work section.

Our work with mapping instances to types is ongo-
ing and critical to the accuracy of the classification.
Our intent is to allow for a pluggable representation
whereby one can define the set of mappers that
would be most appropriate for the data to be
processed. We use a distance mapper to measure the
similarity of predicate labels. We currently use a Lev-
enshtein (Levenshtein 1966) distance measure. We
use a synonym mapper to measure similarity of pred-
icate label synonyms. To obtain synonyms we use
WordNet (Miller 1995) and measure similarity
between sets of synonyms using Jaccard’s similarity.

|ANB]

Jaccard(A,B) = AUB 3)

We measure similarity of predicate values by using
Jaccard’s similarity and measure their frequency of
occurrence and common occurrences. We also evalu-
ate predicate values by detecting known patterns
using regular expressions. For example, an email
address is a commonly occurring pattern. The results
of the mappers become the features we use for classi-
fication. Ongoing work will measure statistical differ-
ences of predicate values and other properties.

Classifying Entity Types

We use a support vector machine (SVM) (Joachims
2002) to develop a model for each entity type. By
using one classifier per entity type, we address two
important issues: we are able to use a linear classifier
for this problem and we are able to horizontally scale
using, for instance, a Hadoop cluster, which is rele-
vant to big data problems. The features from the
mappers are used to create a model and that model is
used to classify new instances.

Null Type and Predicting New Types

We maintain a single type that represents instances
that cannot be associated with any of the known
types; we call this unknown and it is akin to a null
type. In terms of a prefilter, our goal is to reduce the
number of evaluations; however, it is reasonable to
assume that a group of instances will be harder to
associate with a type. We use our type model to assist
us with predicting a type when one cannot be
assigned.

Each predicate is mapped to an entity type and
each entity type is ontologically defined giving way

to hierarchical relationships, equivalent relations,
and pattern similarity relationships. We take an
unfiltered approach for unknown instances and use
the ontological definitions to then find candidate
types. Future work will explore this method and will
aide in our work to predict new types from existing

types.

Experimentation

With each experiment we randomly sampled data
for training and testing and normalized the data.
Our first experiment consisted of using DBpedia to
define our types, DBpedia data for training, and
Arnetminer data (Tang, Zhang, and Yao 2007; Tang
et al. 2008) for testing. Our second experiment con-
sisted of using DBpedia to define our types, DBpedia
data for training, and Freebase data for testing. Our
third experiment consisted of using DBpedia to
define our types and DBpedia data for training and
testing, using two nonoverlapping samples.

Performance Metrics

We use the standard precision and recall metrics for
measuring performance where TruePositive values are
those that are expected to be true and are predicted
to be true, FalsePositive values are those predicted to
be true but are actually false, and FalseNegative are
values that should be true but are predicted as false.
We experimented with both stratified samples and
nonstratified samples for training and testing.
TruePositive

Precision = — — (4)
TruePositive + FalsePositive

TruePositive
Recall = — - (5)
TruePositive + FalseNegative

Evaluation

Our first experiment used 600 instances of the Arnet-
miner data set randomly selected and all of the type
Person with each instance having an average of 11
predicates. We used the DBpedia data to build a
training data set of 2000 instances with 240 entity
types. When evaluating the filter performance,
which is shown in table 1, we saw 100 percent accu-
racy in its performance in designating a candidate
that is consistent with the known entity type. We
also were able to classify person types with close to
100 percent accuracy as shown in table 2. The Arnet-
miner data is a sparse data set with a relatively small
distribution of predicates across the data set. As a
sensitivity test, we wanted to see how other classi-
fiers classified the Person instances. We did find the
Place and Organization classifiers had slightly lower
accuracies; however, we saw higher accuracies when
testing others such as CreativeWork and Settlement.
There are on average only 11 attributes and there are
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Test Found > 1 Type Found All Types
Arnetminer 100 percent 100 percent
DBpedia 99 percent 97 percent
Freebase 60 percent < 10 percent

Table 1. Prefiltering for Candidate Entity Types.

Type Precision Recall f-measure
person 1 .98 .99
place 1 .65 .79
organization 1 .49 .66
creativework 1 .85 92
settlement 1 .98 .99

Table 2. Arnetminer Results.

Type Precision Recall f-Measure
place 0.6 0.576  0.562
person 0.635 0.629  0.625
athlete 0.336 0.376  0.337
organization 0.345 0.365 0.346
company 0.559 0.557 0.556
musical artist 0.495 0.494 0.49
architectural structure 0.478 0.477 0.473
film 0.444 0.444 0.444
building 0.612 0.61 0.609
book 0.661 0.659 0.658
soccer player 0.595 0.537 0.432
politician 0.6 0.6 0.598
event 0.361 0.371 0.356
body of water 0.446 0.444 0.444
school 0.6 0.6 0.589

Table 3. Sample of Freebase Entity Type Classifications.
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null values for a large percentage, for example 95 per-
cent of the title attribute is null.

When we experimented with the Freebase data set
we used 2000 instances for training with 240 differ-
ent entity types and 1000 instances for testing with
over 470 different entity types. In table 1, we show
filtering results for candidate selection. What we
found is that we could relax the filtering algorithm
in order for us to recognize more of the potential
entity types; however, often it was the case that the
DBpedia data set just did not contain the entity type
represented in the Freebase data set. For example, 70
percent of the instances contain the type rdf.free-
base.com/ns/common.topic.* In table 3 we show a sam-
ple of classification results. As the granularity
between entity types in DBpedia is very different
than in Freebase, we expected to see lower than aver-
age results. We show an example of this difference in
figure 3 for entity type Organization.

For the DBpedia experiment we used 2000
instances for training with 240 different types, and
1000 instances for testing with 167 different entity
types. There was no overlap between instances in the
training and test data sets and data was sampled ran-
domly. There were 155 overlapping entity types
between the entity types in the test set and the enti-
ty types in the training sets. Since the training data
and test data were taken from the same data set, we
expected to see reasonable results. With regards to
candidate filtering, as can be seen in table 1, we often
found the types expected. However, the classification
results were slightly lower than our assumptions; this
can be attributed to the information gain filtering
and also the need to optimize the mappers. In table
4 and figure 5, we show the precision, recall, and f-
measure scores.

What we found was that when there was lower
than expected performance, often the entity types in
the test set were not sufficiently represented in the
training set. We did not purposely try to create over-
lap between the training and test set. In the case of
Arnetminer and the Freebase data set we are training
with a completely different data set without any
knowledge of type information, and therefore our
preliminary results are encouraging. Our ongoing
work will improve upon our existing preliminary
implementation. For instance, we are currently work-
ing on statistical methods to measure the actual val-
ues of the relations and attributes since often label
names cannot be mapped. We are also introducing
another level of classification that is contextual.

Conclusions and Ongoing Work

Knowing the types of entities mentioned or refer-
enced in heterogeneous graph data is useful and
important for record linkage, coreference resolution,
and other tasks related to the big data variety and
veracity. In big data problems we believe the
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Figure 3. Top Predicates for Organization.

absence of entity types is a real and continual prob-
lem.

Ideally, the data being processed is annotated with
type information in an appropriate and rich seman-
tic schema or ontology. However, in many cases,
such type information is absent or unavailable. This
is especially common when the data has been auto-
matically generated from a table, spreadsheet, log
file, or some other data format.

We have described our preliminary work for identi-
fying fine-grained entity types. Our ongoing work will
perform benchmark evaluations, will include experi-
ments that use other data sources for bootstrapping,
will include experiments that show how performance
is affected by relation size, and will apply our approach
to a particular domain, such as the medical domain.
Our ongoing work will also include adding an addi-
tional level of contextual classification, such that, giv-
en a context, a certain set of entity types would
become candidates for entity type recognition.

Notes
1. From the National Cancer Institute, pubs.cancer.gov.
2. dbpedia.org/ontology.

3. See C. Bizer, A. Jentzsch, and R. Cyganiak, State of the
LOD Cloud, lod-cloud.net/state.

4. rdf.freebase.com/ns/common.topic.

Precision Recall f{-Measure

agent 0.743 0.738 0.736
person 0.781 0.774 0.773
place 0.727 0.724 0.723
populated place 0.772 0.772 0.772
settlement 0.8 0.799  0.799
work 0.843 0.838 0.838
creative work 0.843 0.838 0.838
athlete 0.805 0.798 0.797
species 0.851 0.85 0.85
eukaryote 0.746 0.74 0.738
organization 0.689 0.688 0.687
soccer player 0.895 0.893 0.893
animal 0.943 0.94 0.94
architectural structure 0.667 0.625 0.6
film 0.743 0.735 0.733
artist 0.833 0.813 0.81
album 0.778 0.733 0.722

Table 4: Sample Of DBpedia Entity Type Classifications
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