
Answer set programming (ASP) is a declarative pro-
gramming paradigm introduced by Marek and
Truszczyski (1999) and Niemelä (1999). It grew out of

research on knowledge representation (van Harmelen, Lif-
schitz, and Porter 2008), nonmonotonic reasoning (Ginsberg
and Smith 1988), and Prolog programming (Sterling and
Shapiro 1986). Its main ideas are described in the article by
Janhunen and Niemelä (2016) and in other contributions to
this special issue.

In this introductory article my goal is to discuss the con-
cept of an answer set, or stable model, which defines the
semantics of ASP languages. The answer sets of a logic pro-
gram are sets of atomic formulas without variables (“ground
atoms”), and they were introduced in the course of research
on the semantics of negation in Prolog. For this reason, I will
start with examples illustrating the relationship between
answer sets and Prolog and the relationship between answer
set solvers and Prolog systems. Then I will review the math-
ematical definition of an answer set and discuss some exten-
sions of the basic language of ASP.
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n Answer set programming is a declar-
ative programming paradigm based on
the answer set semantics of logic pro-
grams. This introductory article pro-
vides the mathematical background for
the discussion of answer set program-
ming in other contributions to this spe-
cial issue.



Prolog and Negation as Failure
Simple Prolog rules can be understood as rules for
generating new facts, expressed as ground atoms,
from facts that are given or have been generated ear-
lier. For example, the Prolog program

p(1). p(2). p(3).

q(2). q(3). q(4).

r(X) :- p(X), q(X).

consists of six facts (“1, 2, and 3 have property p; 2,
3, and 4 have property q”) and a rule: for any value
of X, r(X) can be generated if p(X) and q(X) are given
or have been generated earlier.1 In response to the
query ?- r(X) a typical Prolog system will return two
answers, first X = 2 and then X = 3.

Let us call this program Π1 and consider its modi-
fication Π2, in which the “negation as failure” symbol
\+ is inserted in front of the second atom in the body
of the rule:

p(1). p(2). p(3).

q(2). q(3). q(4).

r(X) :- p(X), \+ q(X).

The modified rule allows us, informally speaking, to
generate r(X) if p(X) has been generated, assuming
that any attempt to generate q(X) using the rules of
the program would fail. Given the modified program
and the query ?- r(X) Prolog returns one answer, X = 1.

What is the precise meaning of conditions of this
kind, “any attempt to generate … using the rules of
the program would fail”? This is not an easy ques-
tion, because the condition is circular: it attempts to
describe when a rule R “fires” (can be used to gener-
ate a new fact) in terms of the set of facts that can be
generated using all rules of the program, including R
itself. Even though this formulation is vague, it often
allows us to decide when a rule with negation is sup-
posed to fire. It is clear, for instance, that there is no
way to use the rules of Π2 to generate q(1), because
this atom is not among the given facts and it does
not match the head of any rule of Π2. We conclude
that the last rule of Π2 can be used to generate r(1).

But there are cases when the circularity of the above
description of negation as failure makes it confusing.
Consider the following program Π3, obtained from Π2
by replacing the facts in the second line with a rule:

p(1). p(2). p(3).

q(3) :- \+ r(3).

r(X) :- p(X), \+ q(X).

The last rule justifies generating r(1) and r(2), there
can be no disagreement about this. But what about
r(3)? The answer is yes if any attempt to use the rules
of the program to generate q(3) fails. In other words,
the answer is yes if the second rule of the program
does not fire. But does it? It depends on whether the
last rule can be used to generate r(3) — the question
that we started with.

The first precise semantics for negation as failure
was proposed by Clark (1978), who defined the

process of program completion — a syntactic trans-
formation that turns Prolog programs into first-order
theories. The definition of a stable model, or answer
set, proposed ten years later (Gelfond and Lifschitz
1988), is an alternative explanation of the meaning
of Prolog rules with negation. It grew out of the view
that an answer set of a logic program describes a pos-
sible set of beliefs of an agent associated with this
program; see the paper by Erdem, Gelfond, and
Leone (2016) in this special issue. Logic programs are
similar, in this sense, to autoepistemic theories
(Moore 1985) and default theories (Reiter 1980).2 The
definition of an answer set, reproduced in this arti-
cle, adapts the semantics of default logic to the syn-
tax of Prolog.

We will see that program Π3, unlike Π1 and Π2, has
two answer sets. One answer set authorizes including
X=3 as an answer to the query ?-  q(X) but not as an
answer to the query ?-  r(X); according to the other
answer set, it is the other way around. In this sense,
program Π3 does not give an unambiguous specifica-
tion for query answering. Programs with several
answer sets are “bad” Prolog programs.

In answer set programming, on the other hand, pro-
grams with several answer sets (or without answer sets)
are quite usual and play an important role, like equa-
tions with several roots (or without roots) in algebra.

Answer Set Solvers
How does the functionality of answer set solvers
compare with Prolog?

Each of the programs Π1, Π2, and Π3 will be accept-
ed as a valid input by an answer set solver, except
that the symbol \+ for negation as failure should be
written as not. Thus Π2 becomes, in the language of
answer set programming,

p(1). p(2). p(3).

q(2). q(3). q(4).

r(X) :- p(X), not q(X). 

and Π3 will be written as 
p(1).  p(2).  p(3).

q(3) :- not r(3).

r(X) :- p(X), not q(X).

Unlike Prolog systems, an answer set solver does
not require a query as part of the input. The only
input it expects is a program, and it outputs the pro-
gram’s answer sets. For instance, given program Π1, it
will find the answer set

p(1) p(2) p(3) q(2) q(3) q(4) r(2) r(3)

From the perspective of Prolog, this is the list of all
ground queries that would generate the answer yes
for this program. For program Π2, the answer set

p(1) p(2) p(3) q(2) q(3) q(4) r(1)

will be calculated. Given Π3 as input, an answer set
solver will find two answer sets:
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Answer:  1

p(1) p(2) p(3) q(3) r(1) r(2)

Answer:  2

p(1) p(2) p(3) r(3) r(1) r(2)

Definition of an Answer Set: 
Positive Programs

I will review now the definition of an answer set,
beginning with the case when the rules of the pro-
gram do not contain negation, as in program Π1 dis-
cussed earlier. By definition, such a program has a
unique answer set, which is formed as follows.

First, we ground the program by substituting spe-
cific values for variables in its rules in all possible
ways. The result will be a set of rules of the form

A0 :- A1, ..., An. (1)

where each Ai is a ground atom. (We think of “facts,”
such as p(1) in Π1, as rules of form (1) with n = 0 and
with the symbol :- dropped.) For instance, grounding
turns Π1 into

p(1). p(2). p(3).

q(2). q(3). q(4).

r(1) :- p(1), q(1).

r(2) :- p(2), q(2).

r(3) :- p(3), q(3).

r(4) :- p(4), q(4).

The answer set of the program is the smallest set S of
ground atoms such that for every rule (1) obtained by
grounding, if the atoms A1, …, An belong to S then
the head A0 belongs to S too.

For instance, in the case of program Π1 this set S
includes (1) the facts in the first two lines of the
grounded program, (2) the atom r(2), because both
atoms in the body of the rule with the head r(2) belong
to S, and (3) the atom r(3), because both atoms in the
body of the rule with the head r(3) belong to S.

The following program contains two symbolic
constants, block and table:

number(1). number(2). number(3).

location(block(N)) :- number(N).

location(table).

Grounding turns the second rule into
location(block(1)) :- number(1). 

location(block(2)) :- number(2). 

location(block(3)) :- number(3).

The answer set of this program consists of the atoms
number(1)  number(2)  number(3)  location(block(1))

location(block(2))  location(block(3))  location(table)

Definition of an Answer Set: 
Programs with Negation

In the general case, when the rules of the given pro-
gram may contain negation, grounding gives a set of
rules of the form

A0 :– A1, ..., Am,  not Am+1 ,..., not An. (2)

where each Ai is a ground atom. (To simplify nota-
tion, we showed all negated atoms at the end.) For
instance, the result of grounding Π2 is

p(1). p(2). p(3).

q(2). q(3). q(4).

r(1) :- p(1), not q(1).

r(2) :- p(2), not q(2).

r(3) :- p(3), not q(3).

r(4) :- p(4), not q(4).

To decide whether a set S of ground atoms is an answer
set, we form the reduct of the grounded program with
respect to S, as follows. For every rule (2) of the
grounded program such that S does not contain any of
the atoms Am+1, …, An, we drop the negated atoms
from (2) and include the “positive part” (1) of the rule
in the reduct. All other rules are dropped from the
grounded program altogether. Since the reduct con-
sists of rules of form (1), we already know how to cal-
culate its answer set. If the answer set of the reduct
coincides with the set S that we started with then we
say S is an answer set of the given program.

For instance, to check that the set

{p(1),  p(2),  p(3),  q(2),  q(3),  q(4),  r(1)} (3)

is an answer set of Π2, we calculate the reduct of the
grounded program with respect to this set. The
reduct is

p(1). p(2). p(3).

q(2). q(3). q(4).

r(1) :- p(1).

(The last three rules of the grounded program are not
included in the reduct because set (3) includes q(2),
q(3), and q(4).) The answer set of the reduct is indeed
the set (3) that we started with. If we repeat this com-
putation for any set S of ground atoms other than (3)
then the result may be a subset of S, or a superset of
S, or it may partially overlap with S, but it will never
coincide with S. Consequently (3) is the only answer
set of Π2.

Intuitively, the reduct of a program with respect to
S consists of the rules of the program that “fire”
assuming that S is exactly the set of atoms that can be
generated using the rules of the program. If the
answer set of the reduct happens to be exactly S then
we conclude that S was a “good guess.”

The concept of an answer set can be defined in
many other, equivalent ways (Lifschitz 2010).

Extensions of the Basic Language
Arithmetic. Rules may contain symbols for arithmetic
operations and comparisons, for instance:

p(1). p(2).

q(1). q(2).

r(X+Y) :- p(X), q(Y), X<Y.

The answer set of this program is



p(1) p(2) q(1) q(2) r(3)

(In view of the condition X < Y in the body, the only
values substituted for the variables in the process of
grounding are X = 1, Y = 2.)

Disjunctive Rules (Gelfond and Lifschitz 1991). The
head of a rule may be a disjunction of several atoms
(often separated by bars or semicolons), rather than
a single atom. For instance, the rule

p(1) | p(2).

instructs the solver to include p(1) or p(2) in each
answer set. The answer sets of this one-rule program
are

Answer: 1 

p(1)

Answer: 2 

p(2)

Choice Rules (Niemelä and Simons 2000). Enclosing
the list of atoms in the head in curly braces repre-
sents the “choice” construct: choose in all possible
ways which atoms from the list will be included in
the answer set. For instance, the one-rule program

{ p(1) ; p(2) }.

has 4 answer sets:
Answer:  1

Answer: 2 

p(1)

Answer: 3 

p(2)

Answer: 4 

p(1)   p(2)

A choice rule may specify bounds on the number of
atoms that are included. The lower bound is shown
to the left of the expression in braces, and the upper
bound to the right. For instance, the one-rule pro-
gram

1 { p(1) ; p(2) }.

has 3 answer sets — answers 2–4 from the previous
example. The one-rule program

{ p(1) ; p(2) } 1.

has 3 answer sets as well — answers 1–3.

Constraints. A constraint is a disjunctive rule that has
0 disjuncts in the head, so that it starts with the sym-
bol :-. Adding a constraint to a program eliminates
the answer sets that satisfy the body of the con-
straint. For instance, the answer sets of the program

{ p(1) ; p(2) }.

:- p(1), not p(2).

are answers 1, 3, and 4 from the preceding list.
Answer 2 violates the constraint, because it includes
p(1) and does not include p(2).

Classical Negation (Gelfond and Lifschitz 1991).
Atoms in programs and in answer sets can be pre-
ceded by the “classical negation” sign (–) that should
be distinguished from the negation as failure symbol

(not). This is useful for representing incomplete infor-
mation. For instance, the answer set

p(a) p(b) -p(c) q(a) -q(c)

can be interpreted as follows: a and b have property
p, and c does not; a has property q, and c does not;
whether b has property q we do not know. A rule of
the form

– A :- not A.

containing classical negation in the head and nega-
tion as failure in the body expresses the “closed world
assumption” for the atom A: A is false if there is no
evidence that A is true. The rule

p(T+1) :- p(T), not -p(T+1).

expresses the “frame default” (Reiter 1980) in the lan-
guage of answer set programming: if p was true at
time T and there is no evidence that p became false at
time T + 1 then p was true at time T + 1.

Input languages of many answer set solvers include
other useful extensions of the basic language, such as
aggregates (Faber, Leone, and Pfeifer 2004), weak con-
straints (Buccafuri, Leone, and Rullo 1997), consis-
tency-restoring rules (Balduccini and Gelfond 2003),
and P-log rules (Chitta, Gelfond, and Rushton 2009).

Extending the Definition 
of an Answer Set

The problem of extending the definition of an answer
set to additional constructs, such as those reviewed
in the previous section, can be approached in several
ways. One useful idea is to treat expressions in the
bodies and heads of rules as logical formulas written
in alternative notation. For instance, we can think of
the list in the body of (2) as a conjunction of literals:

A1 ∧ ··· ∧ Am ∧ ¬Am+1 ∧ ··· ∧ ¬An.

A choice expression {A1; . . . ; An} can be treated as a
conjunction of “excluded middle” formulas:

(A1 ∨ ¬A1) ∧ ··· ∧ (An ∨ ¬An)

(Ferraris and Lifschitz 2005). Under this approach,
the rules of a grounded program are expressions of
the form F ← G, where F and G are formulas built
from ground atoms using conjunction, disjunction,
and negation.3

The definition of the reduct was extended to such
rules by Lifschitz, Tang, and Turner (1999). In the
process of constructing the reduct of a rule F ← G
with respect to a set S of ground atoms, every subfor-
mula that begins with negation is replaced by a logi-
cal constant: by true if it is satisfied by S, and by false
otherwise.

Gebser et al. (2015) defined the syntax and seman-
tics of many constructs implemented in the solver
CLINGO using a generalization of this approach that
allows the formulas F and G to contain implication,
and that allows conjunctions and disjunctions in F
and G to be infinitely long.
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Notes
1. In Prolog programs, a period indicates the
end of a rule. Capitalized identifiers are used
as variables. The symbol :- reads “if”; it sep-
arates the “head” of the rule (in this case,
the atom r(X)) from its “body” (the pair of
atoms p(X), q(X)). Answer set programming
inherited from Prolog these syntactic con-
ventions and terminology.

2.  The relationship between Prolog and
autoepistemic logic was described by Gel-
fond (1987).

3. A more radical version of this view is to
think of the whole rule F ← G as a proposi-
tional formula — as the implication G → F
“written backwards” (Ferraris 2005). It is
also possible to avoid the reference to
grounding in the definition of an answer set
and to treat rules with variables as first-
order formulas (Ferraris, Lee, and Lifschitz
2011).
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