
Building Bridges between
AI and Cognitive Psychology

Stephen K. Reed

n My goal in this article is to encourage
greater integration of the fields of AI and
cognitive psychology by reviewing work
on shared interests. I begin with ex-
amples that link my early research re-
lated to AI with my current efforts to
organize knowledge in the cognitive
sciences. I then describe how cognitive
psychologists have contributed to the
methods explained in The Master Al-
gorithm: How the Quest for the Ulti-
mate Learning Machine Will Remake
OurWorld (Domingos, 2015), including
how these methods can be combined.
The final section discusses three benefits
of building bridges: using computational
models in AI as theoretical models in
cognitive psychology, solving joint com-
putational problems, and facilitating
the interactions between people and
machines.

One might expect that there would be many bridges
connecting AI implemented in computers with nat-
ural intelligence implemented in people. However, I

have been both surprised and disappointed by the lack of
cross references between articles on artificial intelligence
written by computer scientists and articles on natural in-
telligence written by cognitive psychologists. I am surprised
because articles on AI have informed and inspired my own
work as a cognitive psychologist. I begin with examples that
link my early research related to AI with my current efforts to
organize knowledge in the cognitive sciences.

Copyright © 2019, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 SUMMER 2019 17

Article



I next describe a more extended effort by reviewing
how cognitive psychologists have contributed to the
methods explained in the book The Master Algorithm:
How the Quest for the Ultimate Learning Machine Will
Remake Our World (Domingos 2015). The objective of
The Master Algorithm is to inform readers about the
different computational methods used in machine
learning and to encourage them to reflect on how
these methods can be combined to develop algo-
rithms that would be more powerful than any of the
individual methods. I conclude by proposing three
benefits from greater collaboration between AI and
cognitive psychology.

Personal Examples
I discovered as a graduate student majoring in math-
ematical psychology at UCLA that it was easier to
borrow computational methods than to invent my
own. The course that had the most influence on my
dissertation was an engineering course on mathe-
matical models of pattern recognition. The models
were based on exemplars, prototypes, nearest neigh-
bors, and feature probabilities. I wondered which of
these would best predict how people would classify
patterns, so I ran a series of experiments in which
participants classified patterns into two categories
consisting of schematic faces (Reed 1972). As in-
dicated in The Master Algorithm (Domingos 2015),
these categorization methods continue to be refined
as methods for machine learning. They also continue
to be refined by cognitive psychologists, as I will
explain later.
The same year that I published my dissertation,

Newell and Simon (1972) published their classic book
Human Problem Solving. The book offered new insights
into studying human problem solving based in part
on their initial efforts in AI. I was particularly in-
terested in how the structure of the problem space
constrained problem solving, so I joined forces with
two AI faculty members, George Ernst and Ran
Banerji, at Case Western Reserve to study transfer
between themissionary-cannibal problem and amore
challenging variation called the jealous husbands
problem (Reed, Ernst, and Banerji 1974). We were
surprised to find that there was no transfer in reduced
solution time between these two variations of the
missionary–cannibal problem unless students were
given a hint that missionaries corresponded to hus-
bands and wives corresponded to cannibals. The hint
aided transfer from the jealous husbands problem to
themissionary–cannibal problem but not in the other
direction. The insight of Ernst and Banerji that there
was a one-to-many mapping of moves from the
missionary–cannibal to the jealous husbands problem
helped explain this asymmetric transfer.
My initiation into problem solving continued

when I began a visiting appointment at Carnegie
Mellon University, which gave me the opportunity to
work with Herb Simon. I walked into his office in
January 1975 armed with data on the effects of a

subgoal on solving a variation of the missionary-
cannibal problem that required transporting five
missionaries and five cannibals across a river on a boat
holding three people. The subgoal reduced the aver-
age number of moves from 30 for the control group to
20 for the subgoal group. Simon suggested that we
develop a stochastic simulation model to predict the
average number ofmoves between each problem state
for both of the groups. The resulting strategy-shift
model proposed that the subgoal facilitated the shift
from an unsuccessful balance strategy to a successful
means-end strategy (Simon and Reed 1976).
Two years before I joined Herb Simon on this

project, he published “The Structure of Ill Structured
Problems” in the journal Artificial Intelligence (Simon
1973). Well-structured (puzzle) problems can be
represented by a problem space consisting of well-
defined initial and goal states that are connected by
legal moves. Simon considered the missionary-
cannibal problem to be a prototypical example. In
contrast, the initial, goal, and intermediate states of
ill-structured (design) problems are incompletely
specified. Most subsequent reviews of problem solv-
ing, including my own (Reed 2016a), had ignored ill-
structured problems. I therefore decided to examine
Simon’s (1973) claim that information-processing
principles apply to all problems but apply differ-
ently as problems become more ill structured. My
article analyzed the similarities and differences
among puzzles, insight puzzles, classroom problems,
and ill-structured design problems within a theoretical
framework consisting of representation construction,
schema activation, analogical reasoning, and heuristic
search (Reed 2016b). It supported Simon’s claim that
most ill-structured problems can be decomposed into
well-structured subproblems.
Cognitive architectures provide helpful theoretical

frameworks for representing tasks, but most, such as
Soar (Laird 2012; Laird, Newell, and Rosenbloom
1987), emphasize encoding knowledge as symbols.
However, advances in incorporating visuospatial
reasoning into cognitive architectures such as biSoar
(Chandrasekaran et al. 2011) and Soar/SVS (Lathrop,
Wintermute, and Laird 2011) include a visual buffer
that supports analog operations. Figure 1 shows the
components of Soar/SVS.
I apply Soar/SVS to show which of its major com-

ponents (visual buffer, spatial scene, predicate extrac-
tion, predicate projection, visual generation, procedural
memory) are involved in a variety of spatial reasoning
tasks (Reed 2019). Although the architecture works
well for modeling human visuospatial reasoning, it
works less well for modeling human pattern recog-
nition because of the rapid recognition of patterns, in
contrast to the slower speeds of cognition and search
(Smith and Eckroth 2017). Embedding a neural net-
work model, such as the interactive activation model
(McClelland and Rumelhart 1981), within Soar/SVS
would create a hybrid model to take advantage of the
fast recognition of neural networks and the slower
reasoning based on symbolic rules. The next section
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Figure 1. The Soar/SVS Cognitive Architecture.

From Lathrop, Wintermute, and Laird (2011). Reproduced with permission from John Wiley and Sons, ©2010.
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discusses a book that seeks to create more powerful
learning methods through such combinations.

Analogizers, Bayesians,
Connectionists, and Symbolists

In his book The Master Algorithm: How the Quest for the
Ultimate Learning Machine Will Remake Our World,
Pedro Domingos provides many examples demon-
strating that machine learning is all around us
(Domingos, 2015). Machine learning decides what
information to show us when we type a query into
a search engine. It filters spam from our e-mails. It
makes recommendations when we buy a book from
Amazon or select a video from Netflix. It helps pick
stocks for our mutual funds. Domingos describes five
tribes of machine learning: analogizers, Bayesians,
connectionists, evolutionaries, and symbolists. His
book gives readers a clear introduction to these methods
and their applications. It encourages thinking about
how combining the methods can make them more
effective.
For analogizers, learning consists of recognizing

similarities between situations. One method of mea-
suring similarity is to plot patterns in a multidimen-
sional space and use the distance between them as the
measure of similarity. A simple application is to
classify a new pattern by selecting the category that
contains its nearest neighbors. Variations include
comparing a pattern’s similarity to all the patterns in
a category or to a category prototype that represents
the central tendency of the category. Another method
is to find a mathematical formula that describes the
boundary separating the two categories. Note that
Domingos uses the term analogizers as a generic term
for similarity-based reasoning rather than its more
restricted use as reasoning based on a single analogy.
According to Bayesians, learning is a form of un-

certain inference that uses Bayes’s theorem to in-
corporate new data into beliefs. A prior probability of
a hypothesis becomes a posterior probability after
seeing the data. According to the theorem,

Pðhypothesis | dataÞ= PðhypothesisÞ
× Pðdata | hypothesisÞ=PðdataÞ

The formula states that the probability of the hy-
pothesis after incorporating the data are equal to the
prior probability of the hypothesis times the proba-
bility of the data given the hypothesis divided by the
probability of the data. Updated probabilities are there-
fore based on both prior probabilities and evidence.
Connectionists reverse engineer what the brain

does by adjusting the strength of connections be-
tween neurons. They compare a system’s output to
the desired one and then change connection weights
in layers of neurons to reduce error by using a method
called back propagation.Connectionist learning differs
from symbolic learning because concepts are distributed
across neurons rather than represented by a one-to-

one correspondence between concepts and symbols.
Another difference is that all connection weights are
revised in parallel, whereas symbolic methods are
sequential.
Symbolic approaches in the framework of Domingos

(2015) are associated with knowledge engineering, in
which knowledge is programmed into the computer
by experts rather than discovered by learning algo-
rithms. Knowledge for the symbolists occurs by ma-
nipulating symbols that replace expressions with
other expressions. Manipulating symbols to solve prob-
lems typically occurs by learning rules that combine
different pieces of preexisting knowledge. Rules can
be expressed in logic such as, “If gene A is expressed
and gene B is not, then gene C is expressed.” An
important kind of rule learning is inverse deduction,
which identifies missing knowledge needed to make
a deduction.
Evolutionaries simulate natural selection to evolve

computer programs. A key problem is learning struc-
ture, rather than adjusting connection weights.
With the exception of the evolutionaries, members

of the five camps can be easily found among psy-
chologic scientists. Although Domingos (2015) em-
phasizedmachine learning inTheMaster Algorithm, he
also mentioned some contributions by cognitive
psychologists. My objective in the next section is the
opposite — I will emphasize the contributions of
cognitive psychologists.

Cognitive
Psychologists’ Contributions

It is easy to find analogizers, Bayesians, connectionists,
and symbolists among cognitive psychologists. Here
are a few examples of their contributions.

Analogizers
The analogizers (in Domingos’ terminology) have
developed methods to categorize patterns based on
their similarity to other patterns. Four generic
methods for representing similarity in psychology use
geometry, features, alignment, and transformations
(Goldstone and Son 2005; Hahn 2014). The geometric
approach measures proximity in a multidimensional
space, the feature approach examines the number of
shared and unique features, the alignment approach
creates a mapping between structured elements, and
the transformation approach finds the number of
transformations required to convert one pattern into
another. This section discusses representing patterns
in a multidimensional space and assigning weights to
features based on their usefulness in distinguishing
between categories. The section on the symbolists
discusses alignment and transformations.
A geometric measure of the similarity between two

patterns is the distance between them in a multidi-
mensional space. Similar patterns have similar co-
ordinate values and are therefore closer to each other.
Although a variety of distance measures have been
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used in machine learning (Biehl, Hammer, and Villmann
2016), the most frequently used measure in psychol-
ogy is the Minkowski metric depicted in Equation 1
(Goldstone and Son 2005). The distance between two
entities x and y is the sum of the absolute difference
between their coordinate values (xj, yj) on each di-
mension of an N-dimensional space. A special case is
Euclidean distance in which the exponent is r = 2.

dðx,yÞ=
h
�
��xj − yj

��ri1=r for j=1, N dimensions:

(1)

For Equation 1 to have a symbolic interpretation,
the dimensions of the space should be interpretable
as recognizable features. This does not always occur
or may only imperfectly occur. For instance, a four-
dimensional interpretation of animal terms could be
imperfectly interpreted as mammalian/nonmammalian,
water/land/air, mundane/mythical, and unpleasant/
pleasant (Goldstone and Son 2005). Creation of ar-
tificial stimuli, such as the schematic faces in figure 2,
increases the chance of identifying the dimensions
(Reed 1972). The scaling program used in this study
aligned the four-dimensional Euclidean solution of
the similarity judgments with the physical dimen-
sions of forehead (eye height), eyes (separation), nose
(length), and mouth (height).
A limitation of the distance formula in Equation 1 is

the assumption that all feature dimensions are equally
weighted, and therefore it cannot account for those
situations in which some features are better at dis-
criminating between categories. A class-separating
transformation (Sebestyen 1962) provides a norma-
tive method by weighting features to reduce distances
between patterns in the same category and increase
distances between patterns in different categories.
Equation 2 shows a weighted features distance model
that enables higher weights for the more discrimi-
native feature dimensions.

dðx,yÞ=
h
�wr

j

��xj − yj
��ri1=r for j=1, N dimensions:

(2)

Applying the class-separating transformation to the
faces in figure 2 produced weights of 0.46 for forehead
height, 0.24 for eye separation, 0.24 for nose length,
and 0.06 for mouth height when normalized to
sum to 1. The weighted feature distances improved
the prediction of both prototype and exemplar
models, indicating that participants placed more
emphasis on discriminating features. Their ratings of
feature usage also confirmed that they emphasized
the more discriminative features in their decisions
(Reed 1972).
Another confirmation of the differential weighting

of features was found by Nosofsky (1986), whose
context model generalized the exemplar theory of
categorization developed byMedin and Schaffer (1978).
Nosofsky evaluated the model on two observers
who categorized stimuli composed of semicircles

that varied in four levels of size and four levels of the
angle of a radial line. Parameter estimates revealed
support for the hypothesis that the classifiers dis-
tributed their attention across the size and angle
attributes so as to optimize classifications.

Bayesians
The Bayesian approach is illustrated by Anderson’s
(1991) article on the adaptive nature of categoriza-
tion, in which similar instances are classified in the
same category. Anderson applied his rational (Bayesian)
model to a wide range of findings, including category
learning. In developing an adaptive theory, Anderson
proposed that the first step is to specify what the
system is trying to optimize. The second step requires
making assumptions about the structure of the en-
vironment. The third step makes assumptions about
the costs incurred in trying to achieve optimal per-
formance. Anderson applied a Bayesian model to
a wide variety of tasks and discovered the model
performed as well as the specializedmodels developed
by theorists for each of these tasks.
The categorization tasks studied by Anderson typ-

ically consisted of four or five exemplars in each of
two categories. A more recent study used a Bayesian
analysis to generalize from a single visual exemplar of
20 distinct letter-like forms (Lake, Salakhutdinov, and
Tenenbaum 2015). The authors presented Bayesian
program learning as an alternative tomachine learning
methods that require tens or hundreds of examples.
They represented the visual characters by probabilistic
structural procedures that combine primitives into
subparts, subparts into parts, and parts into objects.
Their program builds rich concepts from simpler
primitives that attempt to both recognize and gen-
erate other examples of an object. Although generally
successful on both the recognition and generation
tasks, Bayesian program learning was nonetheless less
successful than people because it lacked explicit
knowledge of visual structure such as parallel lines,
symmetry, and connections between the ends of strokes.
From Anderson’s (1991) perspective, this limitation
was caused by its less well articulated representation of
environmental structure.
The hierarchical Bayesian method has been used to

model causal relations. Gopnik and Wellman (2012)
applied Bayesian models to relate a higher-level
framework theory (input–process–outcome) to spe-
cific inputs, processes, and outcomes. Figure 3 con-
trasts three different representations of this approach
to illustrate how children could learn the role of bi-
ologic processes in explaining causality. Graph A
shows only direct connections between inputs and
outputs, such as that getting sleep helps a person run
faster and avoid illness. Graph B illustrates how an
intervening process (metabolize energy) links specific
inputs (causes) to specific outputs (effects). Graph C
represents further growth of knowledge by showing
how two different processes (metabolize energy and
immune defense) link causes to their effects: Getting
sleep helps people run faster bymetabolizing energy. It
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also helps people avoid illness through improving their
immune defense.
The Bayesian perspective is a very general approach

to child development that requires specific hypoth-
eses to test developmental theories (Gopnik and
Bonawitz 2014). Its principle advantage is that it al-
lows theories to be formulated in precise and trans-
parent ways.

Connectionists
The connectionists have also addressed the problem
ofmodeling similarity but from a different perspective
than the rational analysis used by Anderson (1990)
and the Bayesians. Rogers and McClelland (2014)
discuss this distinction within the framework of
Marr’s (1982) levels of analysis. The rational level
corresponds to Marr’s computational level, which
focuses on an analysis of the problem, including
mathematical methods to solve it. In contrast, the
connectionist approach considers how the brain —

neurons and their connections — constrain the na-
ture of the solutions as formulated by Rumelhart,
Hinton, and McClelland (1986).
The TRACE model of auditory word recognition

(McClelland and Elman 1986) is a typical example.
The model contains three layers to represent the
temporal dynamics of word recognition by taking as
input (1) auditory features such as voiced and acute (2)
that activate phonemes (3) that activate a word. Words

are recognized incrementally by increasing the activation
level of the correct phoneme and word units. Activation
occurs in parallel across these units and includes top-
downprocessing that enables activation at theword level
to influence activation at the phoneme level. The top-
down activation provides the same constraints on
the recognition of phonemes as the interactive acti-
vation model provides on the recognition of letters.
Another connectionist model—a simple recurrent

network—learns the semantic and syntactic proper-
ties of words by attempting to predict the next word in
a sentence (Elman 2004). The network uses each new
word in a sentence (the input) to predict the next
word in the sentence (the output). Learning occurs by
comparing the prediction with the actual occurrence.
A key step in the recurrent network is that the hidden-
unit weights depend on the context unit from the
previous word, which also depended on the context
unit of the previous word, so a history of previous
information is preserved.
The similarity among the words used in the study

resulted in easily interpretable clusters based on
their hidden-unit activation patterns (Elman 2004).
The initial split partitioned the words into verbs and
nouns. The verbs are clustered into transitive verbs
and intransitive verbs. Transitive verbs, such as like
and chase, take a direct object, whereas intransitive
verbs, such as think and sleep, do not. The nouns are
clustered into animates and inanimates, which are

Figure 2. Two Categories of Schematic Faces.

From Reed and Friedman (1973). Reproduced with permission from Springer Nature, ©1973 the Psychonomic Society.
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further partitioned based on their semantic fea-
tures into categories such as breakable objects and
edible objects. It is important to note that the in-
vestigators assigned these category labels based on their
interpretation of the hierarchical cluster analysis. The
labels were not given to the learning network. Its acti-
vation patterns in the hidden layer depended on the
position of the words in the sentences and their relation
to other words in the sentences.

Symbolists
Despite these successes Forbus, Liang, and Rabkina
(2017) argued that the connectionist approach has
limitations as a model of human reasoning. One
limitation is that this approach requires massive
amounts of data to learn—far more than required by
people. A second limitation is that all of the data must
be available at the beginning,whichdoes not capture the

incremental nature of human learning that adds new
information. A third limitation is that it is not always
apparent what is being learned in distributed represen-
tations. These limitations indicate that symbolic repre-
sentations should play a central role in efforts to explain
human cognition, particularly those showing structural
alignments (Forbus, Liang, and Rabkina 2017).
A method related to structural alignment is a

transformational account that measures the similarity
between two objects by the amount of effort required
to transform one representation into another (Hahn
2014). The two methods are related because the
transformational distance is influenced by the align-
ment of the components. For instance, only the ad-
dition of the letter s is required to transform the word
lack into the word slack. However, aligning the first
letters of the two words—s with l, l with a, and so
on—creates differences between all the letters. This
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comparison creates an unreasonably highmeasure of
transformational effort, but it illustrates the inter-
action between transformational effort and align-
ment (Hahn 2014).
Hahn (2014) concluded her review of various

similarity measures by asking whether differences
between methods involve different types of repre-
sentations or whether the methods can be unified
within a common framework. Domingos’ (2015) goal in
writing TheMaster Algorithmwas to encourage readers to
reflect on how combining the analogizer, Bayesian,
connectionist, and symbolic methods would create
more powerful techniques of machine learning. The
next section discusses how psychologists have com-
bined these methods to model human performance.

Combining Methods
One of the most impressive integrations of the
analogizer and Bayesian approaches evaluates dif-
ferent graph representations of similarity (Kemp and
Tenenbaum 2008). Figure 4 shows how the abstract
principles of graph structure—trees, chains, and
rings—can capture the similarity of many differ-
ent types of stimuli (Tenenbaum et al. 2011). The
data are similarities based on biologic features
(panel A), Supreme Court votes (B), judgments of
pure color wavelengths (C), the actual distances
between world cities (D), and Euclidean distances
between faces (E).
As illustrated in figure 4, the best-fitting structures

are a tree for animals (A), a chain for voting records
(B), a ring for colors (C), a ring × chain combination
for cities (D), and a chain × chain combination for
faces (E). Bayesian models can also model develop-
mental changes. For instance, when only five animal
features were used in the model, the animal species
clustered into five categories but did not form a tree
structure (Kemp and Tenenbaum 2008). The initial
categories consisted of birds, insects, two classes of
mammals, and water animals such as a dolphin,
a salmon, and an alligator. As the number of features
increased from 5 to 20, there was a qualitative shift
between these partitions and a tree structure. The tree
became increasing complex with the further addition
of features that correspondedmore closely to the adult
classifications shown in figure 4A.
As is the case for causal relations in figure 3, the

model is a hierarchical Bayesian model because there
are two components in determining the best fit
(Holyoak 2008). One component is finding whether
the best structure is a tree, a chain, a ring, a chain ×
chain, or a ring × chain. This component corre-
sponds to P(hypothesis|data), where the hypothesis
is one of the structures in figure 4, and the data are
the similarities between pairs of items. The other
component is finding the location of examples
within the structure. In figure 4B, the task requires
not only determining that a chain is sufficient for
comparing the votes of Supreme Court justices but

also determining the location of the justices on the
chain. The voting patterns of Justices Marshall and
Brennan were very similar to each other and very
different from the voting patterns of Justices Scalia
and Thomas.
An integration of the analogizer and symbolist

perspectives occurs in the hybrid architectures dis-
cussed by Love (2015). The hybrid architectures
contain both similarity measures and rules such as,
“If it has feathers and wings, then it is a bird.” A rule
can be considered a special case of similarity when
only a single or a small subset of an object’s attri-
butes are relevant (Pothos 2005). Hybrid architec-
tures such as SUSTAIN (Love, Medin, and Gureckis
2004) incorporate selective attention mechanisms
to enable similarity models to follow rules by fo-
cusing on a critical dimension. For instance, in
classifying the make of cars, SUSTAIN learns that
shape is a better predictor than color. It can account
for human behavior in learning problems that re-
quire a simple rule and exceptions to those rules by
creating a small set of clusters that encode items that
follow rules and other clusters for those items that
are exceptions.
COVIS is a neurologically inspired theory of cate-

gory learning that proposes both a rule-based system
that can quickly learn rule-based categories and
a procedural learning system that more slowly learns
a wide variety of other category structures (Ashby and
Valentin 2017). One of their tasks differed along two
dimensions, orientation and narrowness of bars. A
rule-based task involves categorizing on a single di-
mension, such as narrow bars belonging in one
category and wide bars in the other category. An in-
formation integration task involves using both di-
mensions. COVIS proposes that the two tasks require
different memory and neuroscience structures. For
instance, rule-based tasks depend more on working
memory and other declarative memory systems,
whereas prototype distortion tasks depend more on
perceptual representations in the visual cortex (Ashby
and Valentin 2017).
A Bayesian and symbolist integration is a guiding

principle of the architecture ACT-R. As stated in the
preface to its formulation, “One should begin with
a rational analysis to figure out what the system
should be doing and then worry about how the pre-
scriptions of a rational analysis are achieved in the
mechanism of the architecture” (Anderson 1990, xi).
Although the Bayesian formulation drives the ratio-
nal analysis, symbolic production systems drive the
implementation (Anderson 1983). The production rules
have the form “If [condition] Then [action]” that
specifies the necessary conditions for executing an ac-
tion. Choice among competing production rules is
based on their utilities—estimates of the rule’s proba-
bility of success and cost in leading to the goal.
Connectionism has also been important in the

development of the ACT models, which have a long
history of connecting a subsymbolic activation-based
memory to a symbolic system of production rules
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(Anderson and Lebiere 2003). The subsymbolic level
tunes the rules to the statistical structure of the en-
vironment. This development resulted in the ACT-R
version of the models in which the R refers to rational
analysis (Anderson 1990).
The relationship between the connectionists and

the symbolists is evident in another hybrid archi-
tecture that combines a lower-level connectionist
network with higher-level symbolic processing.
CLARION is an integrative cognitive architecture
that consists of a top-level explicit representation
and a bottom-level implicit representation (Sun
and Zhang 2006). Explicit knowledge is repre-
sented by easily interpretable symbols that have
clear conceptual meaning. Implicit knowledge is
represented by a subsymbolic distributed represen-
tation within a back-propagation network. In con-
trast to an explicit memory that encodes rules as all
or none, implicit memory supports a graded accu-
mulation of knowledge.
Heile and Sun (2010) developed an explicit-implicit

interaction theory based on CLARION to analyze the
four stages of problem solving proposed in Wallas’s
(1926) influential book The Art of Thought. Preparation
is the initial search for a solution, incubation is a pe-
riod of inactivity following an impasse, illumination
(or insight) is a sudden discovery of a possible solu-
tion, and verification is a determination of whether
the discovered solution is valid. The implementation
of CLARION assumes that the initial preparation
phase is predominately rule based as people respond
to verbal instructions, form a representation of the
problem, and establish goals. In contrast, the second
(incubation) stage is predominately implicit process-
ing in which people may not consciously think about
the problem. The third stage, insight, occurs when the
activation level crosses a threshold that makes the
output available for verbal report. The final verifica-
tion stage, like the initial stage, requires explicit
processing to evaluate the potential of the discovered
solution.
These hybrid architectures demonstrate how ana-

logizer, Bayesian, connectionist, and symbolist
methods can work together. However, not all com-
binations may work. A Bayesian and connectionist
integration presents the biggest challenge for com-
bining pairs of methods because the two approaches
have often been viewed as competitors (Griffiths et al.
2010, McClelland et al. 2010). As stated by Rogers and
McClelland (2014, 1061), “While some may see prob-
abilistic models as replacing or subsuming PDP
[parallel distributed processing] models, another per-
spective is that probabilistic framework and PDP ap-
proach have overlapping but diverging aspirations.
We expect both approaches to continue to evolve and
to challenge each other, and possibly to benefit from
a degree of competition between them.”
But competition may lead to cooperation for the

benefit of both. In their article Building Machines That
Learn and Think Like People, Lake et al. (2017) argue for
an integration of the deep learning connectionist

methods with the building blocks (attention, work-
ing memory, stacks, queues) of traditional cognitive
and computer science. They view the former ap-
proach as exceling in statistical pattern recognition
and the latter approach as exceling in building models
to understand the world. These models—whether
learned, built in, or enriched—are core ingredients
of human intelligence.

Building Machines That Learn and Think Like People is
a must read for anyone interested in computational
intelligence. The article provides a comprehensive
survey of current thought and is supplemented by
many expert commentaries. One of these from the
connectionist camp argues for the flexibility of con-
nectionist learning by avoiding an initial commit-
ment to domain-specific knowledge structures (Hansen
et al. 2017). The authors propose that joining forces is
the best approach for understanding how human
cognitive abilities arise in richly structured learning
environments.

Benefits of Building Bridges
There are likely many benefits in building bridges
between AI and cognitive psychology, but I want to
emphasize three. The first is that computational
programs in AI can serve as potential theoretical
models in cognitive psychology. I mentioned at the
beginning of this article how an engineering course
on mathematical methods of pattern recognition
served as the basis for my modeling human cate-
gorization (Reed 1972). An early collaborative effort
between a cognitive psychologist (Alan Collins) and
a computer scientist (Ross Quillian) resulted in the
hierarchical network model for representing se-
mantic organization in human memory (Collins
and Quillian 1969). But it was the efforts of Newell
and Simon to apply computational methods in
computer science (Newell, Shaw, and Simon 1958)
to human problem solving (Newell and Simon
1972) that introduced many new ideas into cog-
nitive psychology.
A second benefit is that AI and cognitive psychol-

ogy share common methods. One example is the
work summarized here on the methods developed by
the analogizers, Bayesians, connectionists, and sym-
bolists. They also share common challenges such as
the reasoning from imperfect knowledge. My col-
laboration with computer scientist Adam Pease con-
sidered how both people and machines must process
ambiguous, conditional, contradictory, fragmented,
inert, misclassified, and uncertain information (Reed
and Pease 2017).
A third benefit is that the growing impact of AI on

our lives requires understanding how computers and
people can best work together. An impressive current
collaborative effort based on IBM’s WatsonPaths
expands on the Watson question answering system
(Ferrucci et al. 2010) that became famous on the
television show Jeopardy. A new project with the
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Cleveland Clinic Lerner College of Medicine of Case
Western Reserve University presents a patient sum-
mary and asks for the most likely diagnosis or most
appropriate treatment (Lally et al. 2017).
Kitano (2016) discussed how AI has been driven by

the success of previous grand challenges, such as
IBM’s chess program Deep Blue defeating Kasparov,
IBM’s Watson winning on Jeopardy, and humanoid
robots eventually beating humans in RoboCup. Al-
though these victories surpassed human efforts,
Kitano (2016) recommended a new collaborative
grand challenge to develop an AI system that can
assist in a scientific discovery that is worthy of
a Nobel Prize in the biomedical sciences.
In their article on a standard model of the mind,

Laird, Lebiere, and Rosenbloom (2017) proposed that
a fundamental hypothesis in AI is that minds are
cognitive systems that can be implemented by either
natural brains or general-purpose computers. Their
long-term objective is to develop a standardmodel of
a human-like mind that can serve as a common
computational framework across artificial intelli-
gence, cognitive science, neuroscience, and robotics.
The development of such a model would establish
many bridges.
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