Skip to main content
Log in

Real-time monitoring of brake shoe keys in freight cars

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Condition monitoring ensures the safety of freight railroad operations. With the development of machine vision technology, visual inspection has become a principal means of condition monitoring. The brake shoe key (BSK) is an important component in the brake system, and its absence will lead to serious accidents. This paper presents a novel method for automated visual inspection of the BSK condition in freight cars. BSK images are first acquired by hardware devices. The subsequent inspection process is divided into three stages: first, the region-of-interest (ROI) is segmented from the source image by an improved spatial pyramid matching scheme based on multi-scale census transform (MSCT). To localize the BSK in the ROI, census transform (CT) on gradient images is developed in the second stage. Then gradient encoding histogram (GEH) features and linear support vector machines (SVMs) are used to generate a BSK localization classifier. In the last stage, a condition classifier is trained by SVM, but the features are extracted from gray images. Finally, the ROI, BSK localization, and condition classifiers are cascaded to realize a completely automated inspection system. Experimental results show that the system achieves a correct inspection rate of 99.2% and a speed of 5 frames/s, which represents a good real-time performance and high recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, G.B., 2007. Acoustic detection of distressed freight car roller bearings. Proc. ASME/IEEE Joint Rail Conf. and Int. Combustion Engineer Division Spring Technical Conf., p.167–171. [doi:10.1115/JRC/ICE2007-40091]

    Google Scholar 

  • Cao, X., Shen, W., Yu, L., et al., 2012. Illumination invariant extraction for face recognition using neighboring wavelet coefficients. Patt. Recog., 45(4):1299–1305. [doi:10.1016/j.patcog.2011.09.010]

    Article  Google Scholar 

  • Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.886–893. [doi:10.1109/CVPR.2005.177]

    Google Scholar 

  • de Ruvo, P., Distante, A., Stella, E., et al., 2009. A GPUbased vision system for real time detection of fastening elements in railway inspection. Proc. 16th IEEE Int. Conf. on Image Processing, p.2333–2336. [doi:10.1109/ICIP.2009.5414438]

    Google Scholar 

  • Elder, J.H., Velisavljević, L., 2009. Cue dynamics underlying rapid detection of animals in natural scenes. J. Vis., 9(7):7.1–7.20. [doi:10.1167/9.7.7]

    Article  Google Scholar 

  • Gu, W., Xiang, C., Venkatesh, Y.V., et al., 2012. Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Patt. Recog., 45(1):80–91. [doi:10.1016/j.patcog.2011.05.006]

    Article  Google Scholar 

  • Gualdi, G., Prati, A., Cucchiara, R., 2012. Multistage particle windows for fast and accurate object detection. IEEE Trans. Patt. Anal. Mach. Intell., 34(8):1589–1604. [doi:10.1109/TPAMI.2011.247]

    Article  Google Scholar 

  • Guo, L., Ge, P.S., Zhang, M.H., et al., 2012. Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine. Expert Syst. Appl., 39(4):4274–4286. [doi:10.1016/j.eswa.2011.09.106]

    Article  Google Scholar 

  • Hart, J.M., Resendiz, E., Freid, B., et al., 2008. Machine vision using multi-spectral imaging for undercarriage inspection of railroad equipment. Proc. 8th World Congress on Railway Research, p.1–8.

    Google Scholar 

  • Hoiem, D., Efros, A.A., Hebert, M., 2008. Putting objects in perspective. Int. J. Comput. Vis., 80(1):3–15. [doi:10.1007/s11263-008-0137-5]

    Article  Google Scholar 

  • Kim, H., Kim, W., 2011. Automated inspection system for rolling stock brake shoes. IEEE Trans. Instrum. Meas., 60(8):2835–2847. [doi:10.1109/TIM.2011.2119110]

    Article  Google Scholar 

  • Kumar, M.A., Gopal, M., 2010. A comparison study on multiple binary-class SVM methods for unilabel text categorization. Patt. Recog. Lett., 31(11):1437–1444. [doi:10.1016/j.patrec.2010.02.015]

    Article  Google Scholar 

  • Lampert, C.H., Blaschko, M.B., Hofmann, T., 2009. Efficient subwindow search: a branch and bound framework for object localization. IEEE Trans. Patt. Anal. Mach. Intell., 31(12):2129–2142. [doi:10.1109/TPAMI.2009.144]

    Article  Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.2169–2178. [doi:10.1109/CVPR.2006.68]

    Google Scholar 

  • Lee, P.H., Wu, S.W., Hung, Y.P., 2012. Illumination compensation using oriented local histogram equalization and its application to face recognition. IEEE Trans. Image Process., 21(9):4280–4289. [doi:10.1109/TIP.2012.2202670]

    Article  MathSciNet  Google Scholar 

  • Marino, F., Distante, A., Mazzeo, P.L., et al., 2007. A realtime visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 37(3):418–428. [doi:10.1109/TSMCC.2007.893278]

    Article  Google Scholar 

  • Márquez, F.P.G., Roberts, C., Tobias, A.M., 2010. Railway point mechanisms: condition monitoring and fault detection. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit, 224(1):35–44. [doi:10.1243/09544097JRRT289]

    Article  Google Scholar 

  • Mazzeo, P.L., Nitti, M., Stella, E., et al., 2004. Visual recognition of fastening bolts for railroad maintenance. Patt. Recog. Lett., 25(6):669–677. [doi:10.1016/j.patrec.2004.01.008]

    Article  Google Scholar 

  • Milanés, V., Llorca, D.F., Villagrá, J., et al., 2012. Visionbased active safety system for automatic stopping. Expert Syst. Appl., 39(12):11234–11242. [doi:10.1016/j.eswa.2012.03.047]

    Article  Google Scholar 

  • Mu, Y., Yan, S., Liu, Y., et al., 2008. Discriminative local binary patterns for human detection in personal album. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2008.4587800]

    Google Scholar 

  • Oukhellou, L., Debiolles, A., Denoeux, T., et al., 2010. Fault diagnosis in railway track circuits using Dempster-Shafer classifier fusion. Eng. Appl. Artif. Intell., 23(1):117–128. [doi:10.1016/j.engappai.2009.06.005]

    Article  Google Scholar 

  • Quinn, P.C., Eimas, P.D., Tarr, M.J., 2001. Perceptual categorization of cat and dog silhouettes by 3- to 4-month-old infants. J. Exp. Child Psychol., 79(1):78–94. [doi:10.1006/jecp.2000.2609]

    Article  Google Scholar 

  • Rathod, V.R., Anand, R.S., Ashok, A., 2012. Comparative analysis of NDE techniques with image processing. Nondestruct. Test. Eval., 27(4):305–326. [doi:10.1080/10589759.2011.645820]

    Article  Google Scholar 

  • Widodo, A., Yang, B.S., 2007. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process., 21(6):2560–2574. [doi:10.1016/j.ymssp.2006.12.007]

    Article  Google Scholar 

  • Wojek, C., Dorkó, G., Schulz, A., et al., 2008. Slidingwindows for rapid object class localization: a parallel technique. Proc. 30th DAGM Symp. on Pattern Recognition, p.71–81. [doi:10.1007/978-3-540-69321-5_8]

    Google Scholar 

  • Yella, S., Dougherty, M., Gupta, N.K., 2009. Condition monitoring of wooden railway sleepers. Transpo. Res. Part C Emerg. Technol., 17(1):38–55. [doi:10.1016/j.trc.2008.06.002]

    Article  Google Scholar 

  • Zhang, H., Yang, J., Tao, W., et al., 2011. Vision method of inspecting missing fastening components in high-speed ailway. Appl. Opt., 50(20):3658–3665. [doi:10.1364/AO.50.003658]

    Article  Google Scholar 

  • Zhou, F.Q., Zou, R., Gao, H., 2013. Dust collector localization in trouble of moving freight car detection system. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(2):98–106. [doi:10.1631/jzus.C1200223]

    Article  Google Scholar 

  • Zhou, F.Q., Zou, R., Qiu, Y., et al., 2014. Automated visual inspection of angle cocks during train operation. Proc. Instit. Mech. Eng. Part F J. Rail Rapid Transit, 228(7):794–806. [doi:10.1177/0954409713495532]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zou.

Additional information

Project supported by the Special-Funded Programme on National Key Scientific Instruments and Equipment Development (No. 2012YQ140032), the National Natural Science Foundation of China (No. 51179076), the Jiangsu Province Postdoctoral Research Funding Plan (No. 1402012B), the Scientific Research Foundation of Jiangsu University for Senior Personnel (No. 14JDG134), and the Jiangsu Province Science and Technology Support Plan (Industrial) (No. BE2012149)

ORCID: Rong ZOU, http://orcid.org/0000-0002-2297-1348

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, R., Xu, Zy., Li, Jy. et al. Real-time monitoring of brake shoe keys in freight cars. Frontiers Inf Technol Electronic Eng 16, 191–204 (2015). https://doi.org/10.1631/FITEE.1400305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400305

Key words

CLC number

Navigation