Skip to main content
Log in

A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the 1/f noise and the temperature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot address the 1/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the 1/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 μg, and the drift of the Allan variance result is reduced to 17 μg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/°C. The combined approach could be useful for many other closed-loop accelerometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaltonen, L., Halonen, K., 2009. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz. Sens. Actuat. A, 154(1):46–56. [doi:10.1016/j.sna.2009.07.011]

    Article  Google Scholar 

  • Allan, D.W., 1966. Statistics of atomic frequency standards. Proc. IEEE, 54(2):221–230. [doi:10.1109/PROC.1966.4634]

    Article  Google Scholar 

  • Amini, B.V., Abdolvand, R., Ayazi, F., 2006. A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer. IEEE J. Sol.-State Circ., 41(12):2983–2991. [doi:10.1109/JSSC.2006.884864]

    Article  Google Scholar 

  • Chae, J., Kulah, H., Najafi, K., 2005. A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer. J. Micromech. Microeng., 15(2):336–345. [doi:10.1088/0960-1317/15/2/013]

    Article  Google Scholar 

  • Cui, J., Guo, Z.Y., Yang, Z.C., et al., 2011. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller. J. Micromech. Microeng., 21(9):1–11. [doi:10.1088/0960-1317/21/9/095020]

    Article  Google Scholar 

  • Dong, Y., Kraft, M., Redman-White, W., 2007. Higher order noise-shaping filters for high-performance micromachined accelerometers. IEEE Trans. Instrum. Meas., 56(5):1666–1674. [doi:10.1109/TIM.2007.904477]

    Article  Google Scholar 

  • Dong, Y., Zwahlen, P., Nguyen, A.M., et al., 2010. High performance inertial navigation grade sigma-delta MEMS accelerometer. Proc. IEEE/ION Position Location and Navigation Symp., p.32–36. [doi:10.1109/PLANS.2010.5507135]

    Chapter  Google Scholar 

  • Enz, C.C., Temes, G.C., 1996. Circuit techniques for reducing the effects of OP-AMP imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE, 84(11):1584–1614. [doi:10.1109/5.542410]

    Article  Google Scholar 

  • IEEE, 1998. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE Std 952-1997. [doi:10.1109/IEEESTD.1998.86153]

    Google Scholar 

  • Josselin, V., Touboul, P., Kielbasa, R., 1999. Capacitive detection scheme for space accelerometer applications. Sens. Actuat. A, 78(2–3):92–98. [doi:10.1016/S0924-4247(99)00227-7]

    Article  Google Scholar 

  • Kajita, T., Moon, U.K., Temes, G.C., 2002. A two-chip interface for a MEMS accelerometer. IEEE Trans. Instrum. Meas., 51(4):853–858. [doi:10.1109/TIM.2002.803508]

    Article  Google Scholar 

  • Karabalin, R.B., Villanueva, L.G., Matheny, M.H., et al., 2012. Stress-induced variation in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett., 108:236101. [doi:10.1103/PhysRevLett.108.236101]

    Article  Google Scholar 

  • Ko, H., Cho, D.D., 2010. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sens. Actuat. A, 158(1):72–83. [doi:10.1016/j.sna.2009.12.017]

    Article  Google Scholar 

  • Lakdawala, H., Fedder, G.K., 2004. Temperature stabilization of CMOS capacitive accelerometers. J. Micromech. Microeng., 14(4):559–566. [doi:10.1088/0960-1317/14/4/017]

    Article  Google Scholar 

  • Lee, J., Rhim, J., 2012. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. J. Micromech. Microeng., 22(9):1–11. [doi:10.1088/0960-1317/22/9/095016]

    MATH  Google Scholar 

  • Lee, K., Takao, H., Sawada, K., et al., 2003. A three-axis accelerometer for high temperatures with low temperature dependence using a constant temperature control of SOI piezoresistors. Proc. 16th IEEE Annual Int. Conf. on Micro Electro Mechanical Systems, p.478–481. [doi:10.1109/MEMSYS.2003.1189790]

    Google Scholar 

  • Li, M., Horsley, D.A., 2014. Offset suppression in a micromachined Lorentz force magnetic sensor by current chopping. J. Microelectromech. Syst., 23(6):1477–1484. [doi:10.1109/JMEMS.2014.2316452]

    Article  Google Scholar 

  • Liu, D., Chi, X., Cui, J., et al., 2008. Research on temperature dependent characteristics and compensation methods for digital gyroscope. Proc. 3rd Int. Conf. on Sensing Technology, p.273–277. [doi:10.1109/ICSENST.2008.4757112]

    Google Scholar 

  • Petkov, V.P., Boser, B.E., 2004. Capacitive interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., et al. (Eds.), Enabling Technology for MEMS and Nanodevices. Wiley-VCH Weinheim, p.49–92. [doi:10.1002/9783527616701.ch3]

    Chapter  Google Scholar 

  • Prikhodko, I.P., Trusov, A.A., Shkel, A.M., 2013. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens. Actuat. A, 201:517–524. [doi:10.1016/j.sna.2012.12.024]

    Article  Google Scholar 

  • Samarao, A.K., Ayazi, F., 2012. Temperature compensation of silicon resonators via degenerate doping. IEEE Trans. Electron Dev., 59(1):87–93. [doi:10.1109/TED.2011.2172613]

    Article  Google Scholar 

  • Schreier, R., 1993. An empirical study of high-order singlebit delta-sigma modulators. IEEE Trans. Circ. Syst. II, 40(8):461–466. [doi:10.1109/82.242348]

    Article  Google Scholar 

  • Willemenot, E., Touboul, P., 2000. On-ground investigation of space accelerometer noise with an electrostatic torsion pendulum. Rev. Sci. Instrum., 71(1):302–309. [doi:10.1063/1.1150197]

    Article  Google Scholar 

  • Wongkomet, N., Boser, B.E., 1998. Correlated double sampling in capacitive position sensing circuits for micromachined applications. Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, p.723–726. [doi:10.1109/APCCAS.1998.743923]

    Google Scholar 

  • Wortman, J.J., Evans, R.A., 1965. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys., 36(1):153–156. [doi:10.1063/1.1713863]

    Article  Google Scholar 

  • Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise lowoffset capacitive sensing amplifier for a \(50 - \mu g/\surd Hz\) monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5):722–730. [doi:10.1109/JSSC.2004.826329]

    Article  Google Scholar 

  • Yoshida, Y., Kakuma, H., Asanuma, H., et al., 2005. A linear model based noise evaluation of a capacitive servo-accelerometer fabricated by MEMS. IEICE Electron. Expr., 2(6):198–204. [doi:10.1587/elex.2.198]

    Article  Google Scholar 

  • Zheng, X., Jin, Z., Wang, Y., et al., 2009. An in-plane low-noise accelerometer fabricated with an improved process flow. J. Zhejiang Univ.-Sci. A, 10(10):1413–1420. [doi:10.1631/jzus.A0820757]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-he Jin.

Additional information

ORCID: Ming-jun MA, http://orcid.org/0000-0002-2012-8699

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Mj., Jin, Zh. & Zhu, Hj. A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer. Frontiers Inf Technol Electronic Eng 16, 497–510 (2015). https://doi.org/10.1631/FITEE.1400349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400349

Key words

CLC number

Navigation