Skip to main content
Log in

An ensemble method for data stream classification in the presence of concept drift

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

One recent area of interest in computer science is data stream management and processing. By ‘data stream’, we refer to continuous and rapidly generated packages of data. Specific features of data streams are immense volume, high production rate, limited data processing time, and data concept drift; these features differentiate the data stream from standard types of data. An issue for the data stream is classification of input data. A novel ensemble classifier is proposed in this paper. The classifier uses base classifiers of two weighting functions under different data input conditions. In addition, a new method is used to determine drift, which emphasizes the precision of the algorithm. Another characteristic of the proposed method is removal of different numbers of the base classifiers based on their quality. Implementation of a weighting mechanism to the base classifiers at the decision-making stage is another advantage of the algorithm. This facilitates adaptability when drifts take place, which leads to classifiers with higher efficiency. Furthermore, the proposed method is tested on a set of standard data and the results confirm higher accuracy compared to available ensemble classifiers and single classifiers. In addition, in some cases the proposed classifier is faster and needs less storage space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baena-García, M., del Campo-Ávila, J., Fidalgo, R., et al., 2006. Early drift detection method. ECML PKDD.

    Google Scholar 

  • Bifet, A., 2009. Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explor. Newsl., 11(1):55–56. [doi:10.1145/1656274.1656287]

    Article  Google Scholar 

  • Bifet, A., Holmes, G., Kirkby, R., et al., 2010. MOA: massive online analysis. J. Mach. Learn. Res., 11:1601–1604.

    Google Scholar 

  • Brzezinski, D., Stefanowski, J., 2014. Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neur. Netw. Learn. Syst., 25(1):81–94. [doi:10.1109/TNNLS.2013.2251352]

    Article  Google Scholar 

  • Gama, J., 2010. Knowledge Discovery from Data Streams. Chapman & Hall/CRC, London.

    Book  MATH  Google Scholar 

  • Gama, J., Medas, P., Castillo, G., et al., 2004. Learning with drift detection. Brazilian Symp. on Artificial Intelligence, p.286–295. [doi:10.1007/978-3-540-28645-5_29]

    Google Scholar 

  • Hulten, G., Spencer, L., Domingos, P., 2001. Mining timechanging data streams. Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery Data Mining, p.97–106. [doi:10.1145/502512.502529]

    Google Scholar 

  • Jiang, T., Feng, Y.C., Zhang, B., et al., 2009. Monitoring correlative financial data streams by local pattern similarity. J. Zhejiang Univ.-Sci. A, 10(7):937–951. [doi:10.1631/jzus.A0820445]

    Article  MATH  Google Scholar 

  • Kolter, J.Z., Maloof, M.A., 2007. Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res., 8:2755-2790.

    Google Scholar 

  • Kuncheva, L.I., 2004. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken.

    Book  Google Scholar 

  • Minku, L.L., Yao, X., 2012. DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng., 24(4):619–633. [doi:10.1109/TKDE.2011.58]

    Article  Google Scholar 

  • Oza, N.C., 2005. Online bagging and boosting. IEEE Int. Conf. on System and Man Cybernetics, p.2340–2345. [doi:10.1109/ICSMC.2005.1571498]

    Google Scholar 

  • Ruping, S., 2001. Incremental learning with support vector machines. IEEE 13th Int. Conf. on Data Mining, p.641–642. [doi:10.1109/ICDM.2001.989589]

    Google Scholar 

  • Sim, J., Wright, C.C., 2005. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Ther., 85(3):257–268.

    Google Scholar 

  • Street, W.N., Kim, Y.S., 2001. A streaming ensemble algorithm (SEA) for large-scale classification. Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.377–382. [doi:10.1145/502512.502568]

    Google Scholar 

  • Tsymbal, A., Pechenizkiy, M., Cunningham, P., et al., 2008. Dynamic integration of classifiers for handling concept drift. Inform. Fus., 9(1):56–68. [doi:10.1016/j.inffus.2006.11.002]

    Article  Google Scholar 

  • Wang, H., Fan, W., Yu, P.S., et al., 2003. Mining concept-drifting data streams using ensemble classifiers. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.226–235. [doi:10.1145/956750.956778]

    Google Scholar 

  • Xu, W.H., Qin, Z., Chang, Y., 2011. Clustering feature decision trees for semi-supervised classification from high-speed data streams. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(8):615–628. [doi:10.1631/jzus.C1000330]

    Article  Google Scholar 

  • Zhang, P., Zhu, X., Shi, Y., 2008. Categorizing and mining concept drifting data streams. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.812–820. [doi:10.1145/1401890.1401987]

    Google Scholar 

  • Zhang, P., Zhou, C., Wang, P., et al., 2015. E-tree: an efficient indexing structure for ensemble models on data streams. IEEE Trans. Knowl. Data Eng., 27(2):461–474. [doi:10.1109/TKDE.2014.2298018]

    Article  Google Scholar 

  • Zhu, X., Zhang, P., Lin, X., et al., 2010. Active learning from stream data using optimal weight classifier ensemble. IEEE Trans. Syst. Man Cybern. B, 40(6):1607–1621. [doi:10.1109/TSMCB.2010.2042445]

    Article  Google Scholar 

  • Žliobaite, I., 2009. Learning under Concept Drift: an Overview. Technical Report. Vilnius University, Lithuania.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Amiri.

Additional information

ORCID: Omid ABBASZADEH, http://orcid.org/0000-0002-8923-940X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, O., Amiri, A. & Khanteymoori, A.R. An ensemble method for data stream classification in the presence of concept drift. Frontiers Inf Technol Electronic Eng 16, 1059–1068 (2015). https://doi.org/10.1631/FITEE.1400398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400398

Keywords

CLC number

Navigation