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Abstract:    In some networks nodes belong to predefined groups (e.g., authors belong to institutions). Common network cen-
trality measures do not take this structure into account. Gefura measures are designed as indicators of a node’s brokerage role 
between such groups. They are defined as variants of betweenness centrality and consider to what extent a node belongs to 
shortest paths between nodes from different groups. In this article we make the following new contributions to their study: (1) 
We systematically study unnormalized gefura measures and show that, next to the ‘structural’ normalization that has hitherto 
been applied, a ‘basic’ normalization procedure is possible. While the former normalizes at the level of groups, the latter normal-
izes at the level of nodes. (2) Treating undirected networks as equivalent to symmetric directed networks, we expand the defini-
tion of gefura measures to the directed case. (3) It is shown how Brandes’ algorithm for betweenness centrality can be adjusted 
to cover these cases. 
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1  Introduction 
 
Networks are abundant. Indeed, road maps rep-

resent the network of cities and highways, and simi-
larly we have other transportation networks such as 
the worldwide air transport network, metabolic net-
works (Barrat et al., 2004; Guimerà and Amaral, 
2005; Guimerà et al., 2005), and the shipping and 
harbor network. The network that is probably best 
known, the Internet, consists of a worldwide assem-
blage of local, regional, and global academic, busi-
ness, government, private, and public computer net-
works. Many research topics across all disciplines 

are nowadays studied from a network perspective. 
Large-scale analyses of so-called complex networks 
reveal that the same structural features, such as 
skewed degree distributions and local clustering, can 
emerge in different fields (Christensen and Albert, 
2007). This underlines the importance of network 
studies. 

The field of informetrics is no exception to this 
trend (e.g., Otte and Rousseau (2002) and Ding 
(2011)). Maps of science are constructed based on 
the complete Web of Knowledge, Scopus, etc. Top-
ics such as collaboration, diffusion, and citation have 
been studied frequently from the perspective of so-
cial network analysis. Moreover, a whole new sub-
field related to the Internet and the World Wide Web, 
namely webmetrics, has emerged within informetrics. 

In some networks, nodes belong to predefined 
groups. For instance, a network of friendships in 
school may have pupils as nodes and classes as 
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groups. Likewise, a citation network may have arti-
cles as nodes and journals as groups. Previous re-
search has introduced so-called Q-measures (Flom et 
al., 2004), or the newer and preferred term, gefura 
measures, as indicators of a node’s brokerage role 
between groups. In this article we make the following 
new contributions to the study on gefura measures: 

1. Analogous to the treatment of betweenness 
centrality by Brandes (2001; 2008), we start the dis-
cussion by considering gefura measures in directed 
networks. Undirected networks are then equivalent 
to symmetric directed networks. That is, each undi-
rected link {a, b} is equivalent to two directed links 
(a, b) and (b, a). Fig. 1 contains an example. 

 
 
 
 
 
 
 
 
2. We systematically study unnormalized gefura 

measures and show that, next to the ‘structural’ nor-
malization that has hitherto been applied, a ‘basic’ 
normalization procedure is possible. 

3. We show that ‘structural’ normalization pays 
more attention to the group level, whereas ‘basic’ nor-
malization pays more attention to the level of nodes. 

4. Building on the work of Brandes (2008), an 
efficient algorithm is introduced to calculate unnor-
malized or basic gefura measures in both directed 
and undirected networks. 

The main aim of this paper is to provide a gen-
eral theoretical framework for studying the bridging 
role of nodes in networks with predefined groups. 
This article is an extensive elaboration of some ideas 
presented in Rousseau et al. (2015). We apply a 
slightly other notation than in our previous articles 
on this topic. This new notation corresponds better 
with the case of directed networks. 

 
 

2  Background 

2.1  Networks and centrality 

We assume that we have a directed network 

=(V, E), consisting of a set of nodes or vertices (V) 

and a set of links, arcs, or edges (E). Each link (u, v) 
E is a connection from u to v (u, vV). The number 
of shortest paths or geodesics from node g to h (in 
that order) is denoted as pg,h. The number of geodes-
ics from g to h that pass through a node a (a≠g, a≠h, 
so a is not an endpoint) is denoted as pg,h(a). Of 
course, in an undirected network, pg,h=ph,g, and simi-
larly pg,h(a)=ph,g(a), while this is usually not the case 
in a directed network. 

Networks can be characterized by several dif-
ferent measures. Centrality measures are indicators 
that characterize the importance of individual nodes. 
The most important ones are degree centrality, 
closeness centrality, betweenness centrality, and ei-
genvector centrality, referred to as rank prestige by 
Wasserman and Faust (1994). We focus on between-
ness centrality because of its importance to the fol-
lowing discussion. Betweenness centrality character-
izes a node’s control over the geodesic information 
flow through the network. The betweenness centrality 
of node a, denoted as CB(a), is defined as 

 

,
B

, ,

( )
( ) ,g h

g h V g h

p a
C a

p

                        (1) 

 

where we assume that g, h, and a are three different 
nodes. From now on we will use the notation g≠h≠a, 
which should be understood as g≠h, g≠a, and h≠a. 
By convention, we set 0/0=0. In this way, the formula 
of betweenness centrality and subsequent formulae 
in this paper can also be applied to unconnected net-
works (Freeman, 1977). This convention is equiva-
lent to considering only those node pairs (g, h) where 
h is reachable from g. 

Since we treat undirected networks as symmet-
ric directed networks, each path in an undirected 
network is counted twice. For instance, one would 
normally claim that the undirected network in Fig. 1 
contains one geodesic between b and d (b-c-d), 
whereas the symmetric directed interpretation yields 
two geodesics (b-c-d and d-c-b). Hence, when apply-
ing Eq. (1) to an undirected network, one should di-
vide the outcome by two. 

The maximum value of CB(a) in Eq. (1) de-
pends on the size of the network. If one wants to 
compare values between nodes from different net-
works, normalization to values between 0 and 1 can 
be applied. For a network with N nodes, this becomes 

Fig. 1  Undirected network (a) treated as equivalent to a 
directed network with bidirectional links (b) 
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The highest value reached by normalized be-

tweenness centrality is by definition the value one. It 
is obtained by the center of a star network. 

2.2  Brokerage between groups in a network 

In some cases, a network’s nodes may belong to 
different groups. We assume that node groups are 
known (which clearly separates our work from, for 
instance, research on community finding algorithms). 
Brokerage can informally be understood as the ex-
tent to which a node facilitates information exchange 
between other nodes, especially nodes that belong to 
different groups. Brokerage between disjoint groups 
in networks has previously been studied by Gould 
and Fernandez (1989), who studied subnetworks of 
the form a-x-b, where a, x, and b are nodes. Depend-
ing on the question whether or not these nodes be-
long to the same or different groups, they distin-
guished between five different brokerage roles for x. 

Gould and Fernandez (1989) considered only 
situations where the ‘outer’ nodes a and b are directly 
linked to the bridging node x. It is, however, well 
known that information in a network may travel 
through several intermediary nodes. Hence, one can 
also imagine indicators of brokerage that account for 
situations where the bridging node is not necessarily 
directly linked to the outer nodes. This is the case for 
the gefura measures studied in this paper. 

When it comes to brokerage, bridging, or gate-
keepership, Burt’s theory of social capital and struc-
tural holes (Burt, 2004) should be mentioned. Struc-
tural holes in a social network are described as dis-
connected or poorly connected areas between other-
wise densely connected groups of people. Brokers 
play the role of connectors between two or more 
poorly connected groups (Fig. 2) and are rewarded 
for this by an increase in social capital. Burt’s theory 
applies only to social networks and does not start 
from predefined groups; instead, groups are deter-
mined by the network structure. 

A third line of research pertaining to brokerage 
was initiated by Flom et al. (2004) and later elabo-
rated in work of the authors and colleagues. This 
research has introduced a ‘family’ of measures, 
which are different from the work of Gould and  

Fernandez and/or Burt in several ways:  
1. No assumptions on the type of network need 

to be made (connected or disconnected, directed or 
undirected). 

2. The measures are agnostic to setting; i.e., 
they can also be applied outside a social network 
context. 

3. The measures quantify a node’s bridging role 
even if it is not directly linked to the outer nodes. 

4. Groups are well-defined from the outset and 
brokers belong, in principle, to one of these groups 
(although we do not exclude the case that a broker is 
a singleton group on its own). 

 
 
 
 
 
 
 
 
Flom et al. (2004) began this line of research by 

introducing ‘Q-measures’ as an indicator of broker-
age in an undirected  network where nodes belong to 
one of two groups (e.g., males and females). Q-
measures are essentially a variant of betweenness 
centrality that considers only geodesics between 
nodes from different groups. Assume that there are T 
actors (nodes) in the network. Group G contains m 
nodes, while the other group, denoted as H, contains 
n nodes; hence, T=m+n. If actor a belongs to group 
G, and assuming for simplicity that actor a is gm, 
then the Q-measure for this actor, Q(a), is defined as  

 

1
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                (3) 

 
Here, ,i jg hp  denotes the number of shortest paths 

from the ith to the jth node, while , ( )
i jg hp a  is the 

number of shortest paths from the ith to the jth node 
that pass through node a. 

Using a slightly simpler notation, the same for-
mula can be expressed as follows: 

 

,

,

( )1
( ) , .

( 1) 


  
  g h

g G g h
h H

p a
Q a g h a

m n p
        (4) 

Fig. 2  Example of brokerage according to Burt
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Q-measures were applied in Rousseau (2005), 
Chen and Rousseau (2008), and Zhang et al. (2009). 
Whereas the initial definition applied to connected, 
unweighted, and undirected networks, Rousseau and 
Zhang (2008) considered Q-measures in the context 
of weighted directed networks and proposed that in 
this case the definition should be based on flow be-
tweenness centrality (Freeman et al., 1991) rather 
than shortest-path betweenness centrality as defined 
in Eq. (1). 

The main restriction up to this point was that 
the definition allowed for only two groups, even 
though many real-world networks have three or more 
node groups. This restriction was removed by Guns 
and Rousseau (2009), who generalized the Q-
measure definition to any finite number of groups 
and introduced the distinction between ‘global’ Q-
measures (brokerage between all different groups) 
and ‘local’ Q-measures (brokerage between one’s 
own group and the other groups). The new defini-
tions were applied to international co-authorship 
networks (Guns and Liu, 2010; Guns et al., 2011). 
Rousseau et al. (2013; 2014) focused on mathemati-
cal properties of Q-measures, including a convex 
decomposition, relations with betweenness centrality, 
and a characterization of nodes with a normalized Q-
measure equal to one (the highest possible value). In 
Liu et al. (2013) the authors used a binary tree as a 
model for a hierarchical structure. All nodes situated 
at the same height were assumed to form a group. Q-
measure values were determined for each node in a 
binary tree of arbitrary height. 

We note that networks for which node sets con-
sist of disjoint subsets can be considered as a special 
type of multilayer networks, as described in Boccaletti 
et al. (2014).  

A note on naming: Colleagues working in social 
network theory and marketing observed that the term 
‘Q-measure’ is non-descriptive and, moreover, is 
used in other contexts, such as Tobin’s Q in market-
ing (Brainard and Tobin, 1968), Q-analysis as a 
mathematical technique to study and analyze struc-
tures (Atkin, 1972), and Q-measure as an infor-
mation retrieval metric in a graded relevance context 
(Sakai, 2007). The best known Q in network theory 
is probably Newman and Girvan (2004)’s Q denot-
ing modularity in a network. So, indeed, the use of 
the symbol Q and the term Q-measure to study  

brokerage is not optimal at all. 
As these measures gauge the bridging role of 

nodes, the term ‘gefura measure’ (after old Greek 
γεφυρα), meaning bridge measure, might be a more 
descriptive term with universal appeal. From now on 
the authors intend to use the symbol Γ (capital gamma: 
the first letter of gefura) instead of Q. 

 
 

3  Unnormalized gefura measures in directed 
networks 
 

Most of the definitions in previous studies of 
gefura or Q-measures are normalized to the interval 
[0, 1]. This is, for instance, the case in Eq. (3), where 
the division by (m−1)n ensures a maximum value of 
one. Guns and Rousseau (2009) noted that “one may 
imagine circumstances, e.g., real-world transporta-
tion networks, where normalization, leading to a rel-
ative measure, is not optimal. Then no division […] 
is performed. This yields an absolute measure of 
‘bridgeness’.” More specifically, normalization 
makes it possible to compare gefura measures across 
networks of different sizes. If this is not the purpose, 
then normalizing brings no real advantage. We there-
fore start the discussion by considering gefura 
measures without normalization, the most straight-
forward forms. 

In practice, many networks are directed; i.e., 
their links have an inherent direction. Examples in-
clude citation networks, telephone networks (a calls 
b), and any linear order or any hierarchy. Guns and 
Rousseau (2009) wrote that “all formulae for Q-
measures—the original Q-measures for two groups 
as well as Q-measures for any finite number of 
groups—can be applied to directed networks as 
well.” Nevertheless, gefura measures (or Q-measures) 
in directed networks have so far been studied explic-
itly only by Rousseau and Zhang (2008), who pro-
posed a definition for Γ-measures in directed, 
weighted networks (although they pay more attention 
to the question ‘how to deal with link weights’). This 
section and the following ones therefore assume that 
we are working in the setting of directed networks, 
unless explicitly stated otherwise. The undirected 
case can easily be derived by treating the undirected 
network as a symmetric directed network, in which 
each undirected link is replaced by two links  
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between the same node pair but pointing in opposite 
directions. 

If we have a network with three or more groups, 
the basic procedure remains the same: the gefura 
measure of node a is calculated by determining the 
proportion of geodesics between nodes from differ-
ent groups that pass through a. In this case, one 
might pose the question exactly which groups are 
taken into account. That is, one does not necessarily 
need to consider geodesics between nodes from all 
groups but could restrict oneself to geodesics be-
tween nodes from a subset of groups. While specific 
situations may warrant including or excluding specific 
groups, we think that three situations are potentially 
relevant to any network divided into more than two 
groups (Rousseau et al., 2013): 

1. Global: all group pairs are taken into account. 
2. Local: all pairs between a node’s own group 

and other groups are taken into account. 
3. External: all group pairs, except those involv-

ing a node’s own group, are taken into account. 
Before moving on to the definitions, we intro-

duce some notations and assumptions. Consider a 
network subdivided into S non-overlapping groups 
(1<S<+∞). Each group is denoted as Gi (i=1, 2, …, S) 
and contains mi members. It will henceforth be as-
sumed that node a, the node for which we want to 
calculate a gefura measure, belongs to group Gd 
(1≤d≤S). The group to which a given node, say g, 
belongs, is denoted as group(g). 

The global gefura measure is then defined as 
follows: 

 

,
G

, ,
group( ) group( )

( )
( ) .




   g h

g h V g h
g h

p a
a

p
               (5) 

 
The only difference between this formula and 

unnormalized betweenness centrality is the re-
striction that g and h belong to different groups. 

For local gefura measures we essentially have 
one ‘special’ group (a node’s own group, here called 
Gd), and consider shortest paths between this group 
and all the other groups. In a directed network we 
can distinguish between outward geodesics that orig-
inate from Gd and end in another group and inward 
geodesics that originate from another group and end 
in Gd (Fig. 3). If a1 is the node under study, the thick 
line indicates an outward geodesic from a3 to b3, 

while the dashed line indicates an inward geodesic 
from b3 to a3. Node a1 is part of the outward geodesic, 
but not of the inward one. This is an important dis-
tinction. For instance, in an author citation network 
with countries as groups, it makes a profound differ-
ence whether one forms an outward bridge (citing 
authors from other countries) or an inward one (re-
ceiving international citations). Hence, we propose 
that one can distinguish between three cases: inward, 
outward, and both. We will denote these as ΓL(i), ΓL(o), 
and ΓL(b), respectively. They are defined as follows: 
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            (8) 

 
Here, node g always belongs to the same group as a. 
In an undirected network the distinction between 
inward and outward geodesics does not hold and 
ΓL(i)(a)=ΓL(o)(a). For undirected networks, we will 
simply use ΓL(a) for ΓL(b)(a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
If there are only two groups (S=2), then ΓL(a)= 

ΓG(a). 
Finally, the external gefura measure is defined 

as 
 

,
E

, ,

( )
( ) .

j k

g h

j k d g G h G g h

p a
a

p   

                  (9) 

Fig. 3  Inward and outward shortest paths in a directed 
network 
There are two node groups, {a1, a2, a3} and {b1, b2, b3} 
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Note that the first summation considers all pos-
sible j and k (both different from d). Hence, a given 
group once plays the role of Gj and once the role of 
Gk. If S=2, the external gefura measure is equal to 
zero. 

One can easily see that there is no overlap be-
tween the group pairs on which ΓL(b) and ΓE are 
based. Furthermore, the group pairs for ΓG are a dis-
joint union of those used to calculate ΓL(b) and ΓE. 
More specifically, the relationship between global, 
local, and external gefura measures is as follows: 

 
ΓG=ΓL(b)+ΓE.                           (10) 

 
 

4  Normalized gefura measures in directed 
networks 
 

The next step is to define the same measures, 
global, local, and external gefura, with normalization. 
Depending on the relative importance one gives to 
groups or nodes we come up with two definitions. 

4.1  Structural normalization 

The structural global gefura measure, denoted 

as S
G , is defined as follows (Guns and Rousseau, 

2009): 
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The symbol Pk,l refers to the number of possible 
combinations of elements belonging to groups Gk 
and Gl. Hence, Pk,l=|Gk\{a}|·|Gl\{a}|, where |·| refers 
to the number of elements in the set. The part be-
tween |·| is essentially a normalized gefura measure 
for two groups Gk and Gl (see Eq. (4)); this can be 
called a partial gefura measure and is denoted as Γk,l 
(note that, in general, Γk,l(a)≠Γl,k(a)). Two normaliza-
tions are applied here: first, an ‘inner’ normalization 
in the partial gefura measure, and second, an ‘outer’ 
normalization for the number of groups. In the spe-
cial case Pk,l=0, which occurs if k or l equals d and 
Gd={a}, we apply the rule 0/0=0. 

Likewise, one can define a structural local ge-
fura measure. Again, we distinguish between inward, 
outward, and both: 
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In the case of an undirected network, we have 
(Guns and Rousseau, 2009) 
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Also, note that here the global and local 
measures coincide when S=2. Indeed, 
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Finally, we define the structural external gefura 

measure S
E  (Rousseau et al., 2013): 
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Rousseau et al. (2013; 2014) proved the follow-
ing convex decomposition of the global gefura 
measure: 
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This relation still holds for a directed network. 

4.2  Basic normalization 

We have seen how structural normalization in-
volves an ‘inner’ and an ‘outer’ normalization. An 
alternative starts from the unnormalized definitions and 
uses just one normalization step. As this procedure is 
somewhat simpler, we call it basic normalization. 

The basic global gefura measure B
G  is defined 

as follows: 
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where the symbol Ma is defined as 
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Note that this is simply the unnormalized global 
gefura measure (5) divided by a maximum, to obtain 
a value between zero and one. 

The basic normalization of local gefura measures 
also applies to the inward, outward, and both cases: 
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In the case of undirected networks, this can be 
simplified to 

, ,B
L

, ,

( ) ( )1
( )

2( 1)( ) 


 
       


d

d

h g g h

g Gd d h g g h
h G

p a p a
a

m N m p p
 

,

,

( )1
.

( 1)( ) 



  

d

d

g h

g Gd d g h
h G

p a

m N m p
            (22) 

In all these cases it might be necessary to apply 
the rule 0/0=0. The basic external gefura measure 

B
G  is defined as 
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where Ma,0=∑k≠l≠dmkml. Note that each product of the 
form mkml occurs also as mlmk in this sum.  

Similar to the structural gefura measures, a con-
vex decomposition of the global measure can be  
obtained: 
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4.3  Comparison of structural and basic gefura 
measures 

The difference between structural and basic ge-
fura measures can be clarified by rewriting the for-
mer to be more similar to the latter. We will use the 
structural global gefura measure here, but a similar 
reasoning applies to the local and external measures. 
For simplicity, we will discuss this within the setting 
of an undirected network, but the reasoning is similar 
for directed networks. Eq. (11) can be written as  
follows: 
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Whereas the basic normalization or the unnor-
malized form treats all geodesics the same, the above 
equations show that structural normalization is a sort 
of weighted form of basic normalization. More spe-
cifically, the ratio pg,h(a)/pg,h is multiplied with a fac-
tor wj,k,a, such that more weight is given to geodesics 
between smaller groups. The result is that structural 
normalization treats a small group as equal to a large 
one, whereas basic normalization gives equal weight 
to each geodesic regardless of the group size. 

A few examples may help to clarify this differ-
ence. Consider example network A in Fig. 4, where 
nodes are grouped according to their initial letter: a1 
and a2 form one group; b1, b2, and b3 form another; 
and so on. It can easily be seen that only nodes a1, b1, 

and c1 have Γ>0. We find that S S
G 1 G 1( ) ( )   a b  

S
G 1( ) 2 / 3, c  whereas B B

G 1 G 1( ) 0.37 ( )    a b  
B
G 10.6 ( ) 0.71.  c  The values of the structural ge-

fura measure are the same, because the three nodes 
bridge between the same number of groups. However, 
c1’s basic gefura measure is the highest because this 
node bridges between more node pairs than the other 
two, and likewise, b1 obtains a higher basic gefura 
value than a1. This illustrates how structural normal-
ization normalizes at the group level, while basic 
normalization works at the node level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the same underlying network but a dif-

ferent group partitioning (Fig. 5), we have S
G 1( ) c  

S S
G 1 G 1( ) ( ) b a  and B B B

G 1 G 1 G 1( ) ( ) ( ).  a b c  The 

difference is that c1 is now also a bridge between the 
a- and d-group, and between the b- and d-group.  

In conclusion, structural normalization attaches 
more importance to the group level (answering the 
question: for how many group pairs is the node a 
broker?), whereas basic normalization attaches more 
importance to the node level (answering the question: 
for how many pairs of nodes from different groups is 
the node a broker?). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5  An adapation of the Brandes algorithm 
 

Brandes (2001) introduced a fast algorithm to 
determine betweenness centrality. It works in O(nm) 
time for unweighted networks and O(n+m) space, 
where n denotes the number of nodes and m the 
number of links. In a follow-up article, Brandes 
(2008) showed how the basic algorithm can be 
adapted to calculate many variants of betweenness 
centrality, including gefura measures for two groups 
(with the same asymptotic time complexity). Essen-
tially the same algorithm can be used to calculate 
(unnormalized or basic) global gefura measures. 
Structural gefura measures cannot be determined this 
way and we currently lack an efficient algorithm to 
determine them. This is a practical disadvantage of 
structural gefura. 

We reuse the notation of Brandes (2008). The 
algorithm considers each node once; this node is  
referred to as the ‘source’. Here, S is a stack of nodes, 
Pred[v] is a list of predecessors on the shortest path 
from the source to vV, σ[v] is the number of geo-
desics from the source to v, and δ[v] is the dependency 
of the source on v. That is, if we denote the source by 

Fig. 4  Example network A 

Fig. 5  Example network B 

a2

a1

b1

b2

b3

c1

c2

d1

d2
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g, then , ,[ ] ( ( ) / )g h g hh V
v p v p


 . The crucial ac-

cumulation step then becomes: 
 

Accumulation: 
{ 
for vV do δ[v]←0 

while S not empty do 
pop w←S 
if group(s)≠group(w) then i←1 else i←0 
for vPred[w] do 

 [ ]
[ ] [ ] [ ]

[ ]

v
v v i w

w

  


     

if w≠s then ΓG(w)←ΓG(w)+δ[w] 

} 
 
With a small adaptation, the algorithm can be used as 
follows to determine local gefura: 
 
Accumulation: 
{ 
for vV do δ[v]←0 

while S not empty do 
pop w←S 
if group(s)≠group(w) then i←1 else i←0 
for vPred[w] do 

 [ ]
[ ] [ ] [ ]

[ ]

v
v v i w

w

  


    

if w≠s and group(s)=group(w) then  
ΓL(w)←ΓL(w)+δ[w] 

} 

 

The above algorithms apply to both undirected 
and directed networks. Here, undirected networks are 
treated like symmetric directed networks as well. 
The algorithm for local gefura yields the inward lo-
cal gefura measure when applied to a directed net-
work. One can obtain the outward local gefura by 
reversing the direction of all links prior to using the 
algorithm. 

An implementation of this algorithm in Python 
can be found at https://github.com/rafguns/gefura. 

 
 

6  Conclusions 
 

In this contribution we studied partitioned net-
works, i.e., networks subdivided into non-overlapping, 
non-empty subgroups, which together form the  
complete node set of the network. Measures specially 

adapted to this structure used to be called Q-
measures, but we explained why this was not a good 
terminological choice, preferring the name ‘gefura 
measures’ instead. These measures were designed as 
indicators of a node’s brokerage role between such 
groups. We started by a systematic study of unnor-
malized gefura measures in directed networks and 
showed that, next to the ‘structural’ normalization 
that has hitherto been applied, a ‘basic’ normaliza-
tion procedure is possible. While the former normal-
izes at the level of groups, the latter normalizes at the 
level of nodes. The undirected case follows straight-
forwardly by treating undirected networks as sym-
metric directed networks. Finally, Brandes’ algo-
rithm for betweenness centrality was adjusted to 
cover most of these cases. This led to the open prob-
lem of adapting this algorithm to calculate gefura 
measures in their structural normalization form. We 
observed that the above-mentioned partition refers to 
nodes. Links may connect nodes belonging to the 
same group or may connect nodes belonging to dif-
ferent nodes. 

We are convinced that gefura measures consti-
tute a useful tool for social scientists, informetricians, 
and colleagues studying complex networks, in the 
case the studied networks are partitioned into  
subgroups. 
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