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Abstract: In this paper we address the problem of interpolating a spline developable patch bounded by a given

spline curve and the first and the last rulings of the developable surface. In order to complete the boundary of the

patch a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the

possibility of choosing both endpoints for the rulings. We circumvent such difficulty here by resorting to degree

elevation of the developable surface. This is useful not only to solve this problem, but also other problems dealing

with triangular developable patches.
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1 Introduction

Developable surfaces have been used extensively

in industry for modelling sheets of steel. These sur-

faces are plane patches that have been curved by iso-

metric transformations, preserving lengths of curves,

angles and areas. They mimic the properties of thin

steel plates that are transformed by cutting, rolling

or folding, but not by stretching or application of

heat, which would raise manufacturing costs.

Their inclusion in the NURBS formalism, how-

ever, has not been easy. The condition of devel-

opability is a non-linear differential equation which

translates into non-linear equations for the vertices

of the control net of the surface.

To our knowledge the first reference to NURBS

developable surfaces arises in technical reports

at General Motors (Mancewicz and Frey (1992);

Frey and Bindschadler (1993)). One approach has

been solving the developability condition for low

degrees (Lang and Röschel (1992); Chu and Séquin

(2002); Chu et al. (2008)).

Another approach to developable surfaces con-

‡ Corresponding author
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sists in resorting to projective dual geometry. In this

geometry “points” are planes and “planes” are points

and this is useful to solve the developability condition

(Bodduluri and Ravani (1993); Pottmann and Farin

(1995); Hu et al. (2012)).

One can also construct surfaces

which are approximately developable in-

stead (Chalfant and Maekawa (1998);

Pottmann and Wallner (1999); Leopoldseder (2001);

Peternell (2004); Liu et al. (2011); Zeng et al.

(2012)). A nice review may be found in

Pottmann and Wallner (2001). Applications to

ship hull design may be found in Kilgore (1967);

Pérez and Suárez (2007); Pérez-Arribas et al.

(2006).

A large family of Bézier developable surfaces

was obtained in Aumann (2003, 2004) defining

affine transformations between cells of the con-

trol net. This result has been extended to spline

(Fernández-Jambrina (2007)) and Bézier triangu-

lar (Cantón and Fernández-Jambrina (2012)) devel-

opable patches. A characterisation of Bézier ruled

surfaces is found in Juhász and Róth (2008).

In this paper we make use of the latter con-

structions to find solutions to interpolation prob-

http://arxiv.org/abs/1503.06995v1
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lems with developable surfaces. For instance, in

Fernández-Jambrina (2007), we were able to draw a

developable surface through a given boundary curve

and two rulings, but we could not choose both end-

points for these rulings. We would like to solve such

an issue and also apply the solution to new problems.

Following Fernández-Jambrina (2007), we first

review in Section 2 the main features, definitions and

the classification of developable surfaces, whereas in

Section 3 we deal with the formalism of B-spline

curves. In Section 4 we review the construction of

spline developable surfaces grounded on linear rela-

tions between vertices of the B-spline net, that was

given in Fernández-Jambrina (2007). In Section 5 we

use that construction to provide solutions to an in-

terpolation problem between a spline curve and two

rulings as in Fernández-Jambrina (2007). Finally,

in Section 6 we use degree elevation to provide our

new solution to the problem of interpolating a devel-

opable patch between a spline curve and segments of

the rulings at both ends. This problem could not be

solved with just our previous results. This solution is

extended to triangular patches in Section 7. A final

section of conclusions is included at the end of the

paper.

2 Developable surfaces

A ruled surface patch fills the space between two

parametrised curves c(u), d(u),

b(u, v) = (1 − v)c(u) + vd(u), u ∈ [a, b], (1)

for v ∈ [0, 1], by linking with segments, named rul-

ings, the points on both curves with the same pa-

rameter u.

In general, the tangent plane to the ruled surface

on a ruling is different for each point on the segment.

Developable surfaces are the subcase of ruled surfaces

for which the tangent plane is constant along each

ruling (Struik (1988); Postnikov (1979)).

Let us compute a normal vector at each point of

a ruled surface with the derivatives of the parametri-

sation in Eq. 1,

bu(u, v) = (1−v)c′(u)+vd′(u), bv(u, v) = d(u)−c(u),

(bu × bv) (u, v) = ((1 − v)c′(u) + vd′(u))×(d(u)− c(u)) ,

which is linear in the parameter v. If we calculate it

on both ends of the rulings,

(bu × bv) (u, 0) = c′(u)× (d(u)− c(u)) ,

(bu × bv) (u, 1) = d′(u)× (d(u)− c(u)) ,

we learn that the three vectors c′(u), d′(u), d(u) −

c(u) are to be coplanary in order to have a constant

tangent plane along each ruling of the surface.

Proposition: A ruled surface parametrised as in

Eq. 1 is developable if and only if the vector w(u) =

d(u) − c(u), linking the points d(u), c(u), and the

velocities c′(u), d′(u) of the curves at these points

are coplanary for every value of u.

3 B-spline curves

In this section we review the formalism of B-

spline curves and their main properties in order to fix

the notation, which follows closely the one in Farin

(2002). We may define a B-spline curve c(u) of de-

gree n and N pieces on an interval [un−1, un+N−1],

so that the I-th piece of the curve is defined on

an interval [un+I−2, un+I−1]. For this we require

an ordered list of values of the parameter u, which

are named knots, {u0, . . . , u2n+N−2}. The actual

knots defining the intervals for each piece are the

inner knots {un−1, . . . , un+N−1} whereas the knots

{u0, . . . , un−2} at the beginning of the list (usually

taken to be equal to un) and {un+N , . . . , u2n+N−2}

at the end (usually taken to be equal to un+N−1) are

auxiliary.

Points on B-spline curves can be computed using

the De Boor’s algorithm, c(u) = c
n)
0 (u), consisting

on linear interpolations between consecutive vertices.

For a curve of just one piece:

c
r)
i (u) :=

ui+n − u

ui+n − ui+r−1
c
r−1)
i (u)

+
u− ui+r−1

ui+n − ui+r−1
c
r−1)
i+1 (u), (2)

for i = 0, . . . , n− r, r = 1, . . . , n.

A useful construction, named polarisation or

blossom of the parametrisation of the curve, consists

of interpolating in each step with a different value vi
of the parameter u, c[v1, . . . , vn] := c

n)
0 [v1, . . . , vn],

c
r)
i [v1, . . . , vr] :=

ui+n − vr
ui+n − ui+r−1

c
r−1)
i [v1, . . . , vr−1]

+
vr − ui+r−1

ui+n − ui+r−1
c
r−1)
i+1 [v1, . . . , vr−1].(3)

With this notation, u<i> = u, . . . , u
︸ ︷︷ ︸

i times

, we have

that c(u) = c[u<n>]. Vertices are recovered from the

polarisation as ci = c[ui, . . . , ui+n−1].
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These expressions are valid for B-spline curves

with an arbitrary number of pieces, replacing the

interval [un−1, un] of the first piece by the interval of

the piece under consideration.

We may summarise some properties of the De

Boor algorithm and the polarisation which are rele-

vant for our purposes:

1. The velocity of the curve is

c′(u)=
n

un − un−1

(

c
n−1)
1 (u)− c

n−1)
0 (u)

)

=
n
(
c[u<n−1>, un]− c[u<n−1>, un−1]

)

un − un−1
.(4)

2. The polarisation c[v1, . . . , vn] of the spline curve

c(u), is multiaffine and symmetric. That is, if

λ+ µ = 1,

c[λv1 + µṽ1, . . . , vn] = λc[v1, . . . , vn] + µc[ṽ1, . . . , vn].

Finally, we review two operations with B-spline

curves which we shall need later on:

Insertion of knots: Given a B-spline curve

of degree n with vertices {c0, . . . , cL} and knots

{u0, . . . , uK}, we can split into two the piece cor-

responding to the interval [uI , uI+1] by inserting a

new knot ũ, uI < ũ < uI+1. The new list of knots is

then obviously {ũ0, . . . , ũK+1},

ũi = ui, i = 0, . . . , I, ũI+1 = ũ, ũi = ui−1,

for i = I +2, . . . ,K +1, and, since the curve has not

changed, the blossom provides the new sequence of

vertices {c̃0, . . . , c̃L+1},

c̃i = c[ũi, . . . , ũi+n−1], i = 0, . . . , L+ 1.

Degree elevation: Formally we may express a B-

spline curve c(u) of degree n as a curve of degree

n + 1. The blossom c1 of the degree-elevated curve

is related to the original one in a simple form (Farin

(2002)),

c1[v1, . . . , vn+1]=

n+1∑

i=1

c[v1, . . . , vi−1, vi+1, . . . , vn+1]

n+ 1
(5)

and in the list of knots {u0, . . . , uK} the multiplicity

of inner knots, from un−1 to un+N−1, is increased by

one, without modifying the auxiliary knots.

4 Spline developable surfaces

The developability condition in Proposition 1

may be readily now adapted to spline curves

(Fernández-Jambrina (2007)).

To start, let us consider two B-spline curves of

degree n and one segment over a common list of knots

{u0, . . . , u2n−1}, defined on the interval [un−1, un].

Their respective B-spline polygons are {c0, . . . , cn},

{d0, . . . , dn}.

We may draw a simple conclusion using the De

Boor algorithm. Using Eq. 4 and the last iteration

of Eq. 2, it is clear that the vectors c′(u), d′(u),

d(u)−c(u) are coplanary if and only if the four points

c
n−1)
0 (u), c

n−1)
1 (u), d

n−1)
0 (u), d

n−1)
1 (u) are coplanary

(see Figure 1).

cn-1)(u)
cn-1)(u)

dn-1)(u)

dn-1)(u)

c(u)

d(u)
d'(u)

c'(u)

0

0

1

1

Fig. 1 Characterisation of developable surfaces

The developability condition is then equivalent

to the possibility of writing one of the points as a

barycentric combination of the other ones. For in-

stance,

d
n−1)
1 (u) = µ0(u)d

n−1)
0 (u) + λ0(u)c

n−1)
0 (u)

+ λ1(u)c
n−1)
1 (u),

with coefficients λ0(u), λ1(u), µ0(u) = 1 − λ0(u) −

λ1(u).

We may rewrite this combination in another

form, separating the terms related to each curve,

also in a barycentric fashion,

(1− Λ(u))c
n−1)
0 (u) + Λ(u)c

n−1)
1 (u)

= (1−M(u))d
n−1)
0 (u) +M(u)d

n−1)
1 (u), (6)

Λ(u) =
λ1(u)

λ0(u) + λ1(u)
, M(u) =

1

λ0(u) + λ1(u)
,

which just excludes the case of parallel vectors

d
n−1)
1 (u)− d

n−1)
0 (u), c

n−1)
1 (u)− c

n−1)
0 (u), which cor-

responds to a cone. In this sense we use the word
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generic, since the following results will be valid for

all developable surfaces, but for this type of cone.

Using blossoms and taking into account that

these are multiaffine Eq. (5),

(1 − Λ(u))c
n−1)
0 (u) + Λ(u)c

n−1)
1 (u)

= (1− Λ(u))c[u<n−1>, un−1] + Λ(u)c[u<n−1>, un]

= c
[
u<n−1>, (1− Λ(u))un−1 + Λ(u)un

]
,

the coplanarity condition (Eq. 6) may be written in

a more compact expression,

c[u<n−1>, Λ∗(u)] = d[u<n−1>,M∗(u)], (7)

Λ∗(u) = (1− Λ(u))un−1 + Λ(u)un,

M∗(u) = (1−M(u))un−1 +M(u)un.

This expression is valid for B-spline curves with

arbitrary number of pieces, replacing the interval

[un−1, un] of the first piece by the interval of the

piece under consideration.

The higher the degree of Λ∗(u), M∗(u), the

larger the number of conditions imposed by Eq. 7.

Hence, we restrict now to the case with constant

Λ∗, M∗, which produces the families of developable

surfaces in Aumann (2003); Fernández-Jambrina

(2007). In this case expressions on both sides of

Eq. 7 may be viewed as parametrisations of curves of

degree n−1 and therefore this condition is equivalent

to the same one for their blossoms, since a blossom

is uniquely determined by its parametrisation:

Theorem 1 Two B-spline curves of degree n andN

pieces with the same list of knots {u0, . . . , uK} define

a developable surface on the interval [un−1, un+N−1]

if their blossoms are related by

c[v1, . . . , vn−1, Λ
∗] = d[v1, . . . , vn−1,M

∗],

for some values Λ∗, M∗.

We may obtain relations between the B-

spline polygons of both curves by applying the

previous expression to lists of correlative knots,

{ui+1, . . . , ui+n−1}, taking into account that blos-

soms are multiaffine,

c[ui+1, . . . , ui+n−1, Λ
∗]

= c

[

ui+1, . . . , ui+n−1,
ui+n − Λ∗

ui+n − ui

ui+

Λ∗ − ui

ui+n − ui

ui+n

]

=
ui+n − Λ∗

ui+n − ui

c [ui, . . . , ui+n−1]

+
Λ∗ − ui

ui+n − ui

c [ui+1, . . . , ui+n]

=
ui+n − Λ∗

ui+n − ui

ci +
Λ∗ − ui

ui+n − ui

ci+1,

since ci = c[ui, . . . , ui+n−1].

Corollary 1: Two B-spline curves of degree n with

the same list of knots {u0, . . . , uK} and B-spline

polygons {c0, . . . , cL}, {d0, . . . , dL} define a devel-

opable surface if the cells of the B-spline net of the

surface are plane and their vertices are related by

(ui+n − Λ∗)ci + (Λ∗ − ui)ci+1

= (ui+n −M∗)di + (M∗ − ui)di+1, (8)

for some values Λ∗, M∗ and i = 0, . . . , L− 1.

This family of spline developable surfaces has

the advantage of being defined by linear relations

between vertices, in spite of the non-linearity of the

condition of null gaussian curvature.

The data for this construction are the B-spline

polygon {c0, . . . , cL}, the list of knots {u0, . . . , uK}

and, for instance, the first plane cell of the net, given

by either d0, d1 or d0 and the parameters Λ∗, M∗.

Since this construction is based on blossoms

of curves, it is compatible with algorithms for

B-spline curves, grounded on blossoms, such as,

for instance, the knot insertion algorithm for

subdivision of B-spline curves. That is, if we

split into two pieces the interval [uI , uI+1] by

inclusion of a new knot ũ, so that the new

list is {u0, . . . , uI , ũ, uI+1, . . . , uK} and we com-

pute the new B-spline polygons {c̃0, . . . , c̃L+1} and

{d̃0, . . . , d̃L+1}, these new vertices satisfy Eq. 8.

However, this construction is not compatible

with degree elevation of B-spline curves. The degree-

elevated B-spline developable surface through two B-

spline curves does not coincide with the B-spline de-

velopable surface through the corresponding degree-

elevated curves. See, for instance, in Figure 3 a de-

velopable surface and the control polygons of the
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d3

d0

d2

d5

c0

c3

c1
c4

c2c5
d1

Fig. 2 Developable B-spline surface of 4 pieces of

degree 2

degree-elevated boundary curves (denoted by tildes):

the central cell of the degree-elevated surface is not

even planar.

We show it explictly with a simple example:

Example 1 Find a developable surface patch of de-

gree two and just one piece, bounded by two curves,

c(u) and d(u), with polygons,

c0 = (0, 0, 0), c1 = (3, 3, 0), c2 = (4, 3, 0);

d0 = (0, 0, 2), d1 = (2, 2, 3),

and knots {0, 0, 1, 1}.

From Eq. 8 applied to the first cell of the B-

spline net, i = 0,

(u2−Λ∗)c0+(Λ∗−u0)c1 = (u2−M∗)d0+(M∗−u0)d1,

with n = 2, u0 = 0, u2 = 1, we get

(1− Λ∗)(0, 0, 0) + Λ∗(3, 3, 0) = (1−M∗)(0, 0, 2)

+ M∗(2, 2, 3),

and hence Λ∗ = −4/3 and M∗ = −2.

We lack the vertex d2, but for the second cell of

the net,

(u3−Λ∗)c1+(Λ∗−u1)c2 = (u3−M∗)d1+(M∗−u1)d2,

7

3
(3, 3, 0)−

4

3
(4, 3, 0) = 3(2, 2, 3)− 2d2,

we conclude d2 = (13/6, 3/2, 9/2).

If we formally elevate the degree of both curves

to three, the list of knots extends to {0, 0, 0, 1, 1, 1}

and the new polygons obtained with Eq. 5,

c̃0 = c̃[0, 0, 0] = c[0, 0] = c0 = (0, 0, 0)

c̃1 = c̃[0, 0, 1] =
c[0, 0] + 2c[0, 1]

3
=

c0 + 2c1
3

= (2, 2, 0)

c̃2 = c̃[0, 1, 1] =
2c[0, 1] + c[1, 1]

3
=

2c1 + c2
3

= (10/3, 3, 0)

c̃3 = c̃[1, 1, 1] = c[1, 1] = c2 = (4, 3, 0)

d̃0 = d̃[0, 0, 0] = d[0, 0] = d0 = (0, 0, 2)

d̃1 = d̃[0, 0, 1] =
d[0, 0] + 2d[0, 1]

3
=

d0 + 2d1
3

= (4/3, 4/3, 8/3)

d̃2 = d̃[0, 1, 1] =
2d[0, 1] + d[1, 1]

3
=

2d1 + d2
3

= (37/18, 11/6, 7/2)

d̃3 = d̃[1, 1, 1] = d[1, 1] = d2 = (13/6, 3/2, 9/2)

correspond to a developable surface with non con-

stant Λ∗(u) = −2 − u/2, M∗(u) = −3 − u/2 and it

is easy to check that the four points that form the

second cell, c̃1, c̃2, d̃1, d̃2 do not lie on a plane.

This feature, however, will be shown to be use-

ful for solving interpolation problems, as it will be

apparent in the following sections.

c0

c1

c2

d0d1

d2

c0~c1~c2~

c3~

d3
~

d2
~ d0

~d1
~

Fig. 3 Degree-elevated developable surface of one

piece of degree 2

5 Interpolation of B-spline developable
surfaces

Let us consider the following interpolation prob-

lem:

Problem 1: Given a spline curve c(u) of degree n, N

pieces, B-spline polygon {c0, . . . , cL} and list of knots
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{u0, . . . , uK}, u ∈ [a, b], a = un−1, b = un+N−1, and

two straight lines la and lb through the endpoints

of c(u) with respective director vectors v, w, find a

developable surface b(u, v) such that c(u, 0) = c(u)

and la and lb are the first and last rulings of the

surface, that is, la : c(a, v), lb : c(b, v).

The special case of Bézier curves of degree n was

solved by Aumann (2003), making use of his family

of developable surfaces. His solution is extended to

spline curves in Fernández-Jambrina (2007), solving

the recursion in Eq. 8 for the B-spline net. We review

here this construction in order to extend it to solve

new problems in next sections.

We focus on the general case of crossing rulings

la and lb, since the particular cases of parallel or in-

tersecting rulings may be solved in a simpler fashion

resorting to cylinders and cones respectively.

As in Fernández-Jambrina (2007), the last rul-

ing of the developable surface can be written in terms

of the B-spline net of the curve c(u), the list of knots

and the coefficients Λ∗, M∗,

dL − cL=

L−1∏

i=0

M∗ − ui+n

M∗ − ui

(d0 − c0)

+
Λ∗ −M∗

M∗ − uL−1

(
cL − a(M∗)

)
,

a(M∗)=
M∗ − uL−1

M∗ − u0

L−1∏

i=1

M∗ − ui+n

M∗ − ui

c0

+

L−1∑

i=1

ui+n − ui−1

M∗ − ui−1





L−2∏

j=i

M∗ − un+j+1

M∗ − uj



ci.(9)

From this expression we learn that the vec-

tors along the first and last rulings, d0 − c0 = σv,

dL − cL = τw, and the vector, cL − a(M∗) have to

be linearly dependent and this will happen for any

solution M∗
0 of the algebraic equation

det(a(M∗)− cL,v,w) = 0. (10)

This allows us to write the linear combination

in terms of a basis {v,w,n}, n = v ×w,

a(M∗
0 ) = cL + αv + βw + 0n,

where the coefficients are readily obtained by

Cramer’s rule,

α =
det(a(M∗

0 )− cL,w,n)

det(v,w,n)
,

β =
det(v, a(M∗

0 )− cL,n)

det(v,w,n)
.

Since M∗ is fixed by the coplanarity condition

in Eq. 10, if we wish, we can modify the length of the

rulings through either σ or τ just with the parameter

Λ∗, which remains free so far,

σ = α
Λ∗ −M∗

0

M∗
0 − uL−1

L−1∏

i=0

M∗
0 − ui

M∗
0 − ui+n

,

τ = β
M∗

0 − Λ∗

M∗
0 − uL−1

. (11)

Hence, we have solved the interpolation problem

and we can use Λ∗ for fixing either d0 or dL, but we

cannot choose both ends of the rulings. An example

of this construction is shown in Figure 4

d3

d2

d0

c3

c0

c1

c2

lb

la

v

w

Fig. 4 Developable surface of degree 2 and 2 pieces

The procedure for solving the problem is clear:

1. Write the algebraic equation 10 with the B-

spline polygon for c(u), vectors v, w and the

list of knots and obtain a solution M∗
0 . For any

value of Λ∗ the resulting developable surface will

have c(u) as part of the boundary and the first

and last rulings will be straight lines with re-

spective directions v, w.

2. Fix Λ∗
0 by choosing either d0 or dL in Eq. 11.

3. Use the recursivity relation in Eq. 8 for comput-

ing the vertices di for d(u).

4. The B-spline polygons {c0, . . . , cL},

{d0, . . . , dL} form the B-spline net for the

developable patch complying with the prescrip-

tion.

We illustrate this with an example, which will

be useful as a first step for following sections:
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Example 2 Consider a spline curve of degree three

and three pieces with B-spline polygon

c0 = (0, 0, 0), c1 = (2, 3, 0), c2 = (4, 3, 0),

c3 = (5, 0, 0), c4 = (7, 2, 1), c5 = (9,−1, 3),

and list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}, not uni-

formly spaced. For the first ruling we choose di-

rection v = (0, 0, 2) and for the last ruling we choose

w = (−1, 0, 1). Find a developable surface patch

bounded by c(u) and the rulings defined by v, w.

We calculate the determinant in Eq. 10,

det(a(M∗)− cL,v,w)

=
2(M∗4 + 6.2M∗3 − 12.3M∗2 + 9.3M∗ − 2.1)

M∗3(M∗ − 0.3)(M∗ − 0.7)
,

and we ensure developability by choosing the param-

eter M∗ as one of the real solutions of

M∗4 + 6.2M∗3 − 12.3M∗2 + 9.3M∗ − 2.1 = 0,

which are M∗ = −7.91, 0.37.

We further choose d0 = c0 + v = (0, 0, 2) along

the first ruling, which amounts to choosing σ = 1

in Eq. 11, to obtain the respective values of the pa-

rameter Λ∗ = −6.18, 0.61. We perform the calcu-

lations for the first pair of parameters, Λ∗ = −6.18,

M∗ = −7.91.

We may use now Corollary 1 to obtain the B-

spline polygon of the other boundary curve of the

developable patch through c(u) with prescribed rul-

ings,

di+1=
(ui+n − Λ∗)ci + (Λ∗− ui)ci+1 + (M∗− ui+n)di

M∗ − ui

for i = 0 . . . L− 1,

d1 =
(u3 − Λ∗)c0 + (Λ∗ − u0)c1 + (M∗ − u3)d0

M∗ − u0

= (1.56, 2.34, 2.08)

d2 =
(u4 − Λ∗)c1 + (Λ∗ − u1)c2 + (M∗ − u4)d1

M∗ − u1

= (3.09, 2.29, 2.26)

d3 =
(u5 − Λ∗)c2 + (Λ∗ − u2)c3 + (M∗ − u5)d2

M∗ − u2

= (3.75,−0.15, 2.55)

d4 =
(u6 − Λ∗)c3 + (Λ∗ − u3)c4 + (M∗ − u6)d3

M∗ − u3

= (5.22, 1.42, 3.55)

d5 =
(u7 − Λ∗)c4 + (Λ∗ − u4)c5 + (M∗ − u7)d4

M∗ − u4

= (6.76,−1.00, 5.24).

and check that in fact d5 lies on the last ruling since

d5 − c5 = (−2.24, 0.00, 2.24),

which is a vector proportional to w. The resulting

patch is shown in Figure 5.

d4
d2

d0

c3
c0

c1
c2

v

w

c4

c5

d5

d1

Fig. 5 Developable surface of degree 3 and 3 pieces

Another way to look at this developable sur-

face would be to split the spline curve into three cu-

bic Bézier curves, {C0, C1, C2, C3}, {C3, C4, C5, C6},

{C6, C7, C8, C9}, by knot insertion,

C0 = (0, 0, 0), C1 = (2, 3, 0), C2 = (2.86, 3, 0),

C3 = (3.48, 2.61, 0), C4 = (4.3, 2.1, 0),

C5 = (4.7, 0.9, 0), C6 = (5.52, 1.04, 0.33),

C7 = (6.14, 1.14, 0.57), C8 = (7, 2, 1),

C9 = (9,−1, 3).

If we also split by knot insertion

the other boundary curve in three cubic

pieces, {D0, D1, D2, D3}, {D3, D4, D5, D6},

{D6, D7, D8, D9}, by knot insertion,

D0 = (0, 0, 2), D1 = (1.56, 2.34, 2.08),

D2 = (2.21, 2.32, 2.15),

D3 = (2.67, 1.99, 2.24), D4 = (3.29, 1.56, 2.35),

D5 = (3.55, 0.58, 2.46), D6 = (4.15, 0.68, 2.84),

D6 = (4.15, 0.68, 2.84), D7 = (4.59, 0.75, 3.12),

D8 = (5.22, 1.42, 3.55), D9 = (6.76,−1.00, 5.24),

it is easy to check that the three pieces of the com-

posite ruled surface are in fact independent devel-

opable surfaces on their respective intervals [0, 0.3],

[0.3, 0.7], [0.7, 1], with the same parameters Λ∗ =

−6.18, M∗ = 0.61. The boundary rulings of these

Bézier developable surfaces have been marked in Fig-

ure 5.
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6 Degree elevation of developable sur-
faces

We have seen how to interpolate a spline devel-

opable surface bounded by a spline curve and two

rulings, but we cannot choose both endpoints for

such rulings. This is a limitation of the procedure

in Fernández-Jambrina (2007) described in the pre-

vious sections. A way to deal with this problem is to

try to find a solution of higher degree.

As it is pointed out in Aumann (2004), degree

elevation may be used for enlarging a developable

patch by modifying the length of the ruling segments

of the patch. The idea is simple. We may modify the

length of the director vector

w(u) = d(u)− c(u),

of each ruling by multiplication by a function f(u),

w̃(u) = f(u)w(u) = d̃(u)− c(u),

and as a consequence the boundary of the surface

patch changes. For instance the new second curve

d̃(u) starts at d̃0 = c0 + f(un−1)(d0 − c0) and ends

at d̃L = cL + f(un+N−1)(dL − cL).

It is clear that this transformation just changes

the patch of the developable surface that is covered

by the parametrisation and it allows us to change

the endpoints d0 and dL of the first and last rulings.

The only problem is that the curve d̃(u) is no longer a

spline of degree n. The simplest choice for the factor

is an affine function f(u) = au + b, and in this case

the new surface patch

b̃(u, v) = (1 − u)c(u) + vd̃(u)

will be of degree (n+ 1, 1). An example is shown in

Figure 6.

The next step will be the calculation of the B-

spline polygon of the new boundary of the extended

surface patch.

First, we obtain the blossom of the new

parametrised curve,

d̃(u) = (1− f(u)) c(u) + f(u)d(u).

The blossom is a (n+ 1)-affine symmetric form

d̃[u0, . . . , un] for which

d̃(u) = d̃[u<n+1>].

Since f(u) is an affine function, it is already its

own blossom, f [u] = f(u). For the product h(u) =

c0

c1

c2c3 d0

d1

d2

d3

c0
~

c1
~

c2
~

c3
~

c4
~c5

~

d5

~
d4
~

d3

~

d0

~

Fig. 6 Developable surface of degree 2 and 2 pieces

stretched to a patch of degree 3

f(u)d(u) it is simple to produce an (n+1)-affine form

ĥ satisfying ĥ[u<n+1>] = h(u),

ĥ[u0, . . . , un] = f(u0)d[u1, . . . , un],

but this form is clearly non-symmetric.

However, we may obtain a symmetric form just

by permuting the argument of the function f ,

h[u0, . . . , un]=

n∑

i=0

f(ui)d[u0, . . . , ui−1, ui+1, . . . , un]

n+ 1
.

This form h is (n + 1)-affine, symmetric and

clearly h[u<n+1>] = h(u). Hence, it is the blossom

of the parametrisation h(u).

We may use this result to conclude that the blos-

som of d̃(u) is given by

d̃[u0, . . . , un]=

n∑

i=0

f(ui)d[u0, . . . , ui−1, ui+1, . . . , un]

n+ 1

+

n∑

i=0

(
1− f(ui)

)
c[u0, . . . , ui−1, ui+1, . . . , un]

n+ 1
. (12)

The degree of the curve c(u) must be formally

elevated to n + 1 in order to complete the B-spline

net of the surface patch of degree (n+1, 1). It can be

computed by taking f ≡ 1 in the previous formula

for d̃. The degree-elevated blossom for c(u) is

c̃[u0, . . . , un]=
1

n+ 1

n∑

i=0

c[u0, . . . , ui−1, ui+1, . . . , un].
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The list of knots of the degree-elevated curves

(Farin (2002)) is also modified by increasing by one

the multiplicity of the inner knots un−1,. . . ,un+N−1,

{u0, . . . , un−1, un−1, . . . , un+N−1, un+N−1, . . . , uK}.

Then the new B-spline polygons of the curves

c(u) and d̃(u) will be {c̃0, . . . , c̃L′}, {d̃0, . . . , d̃L′},

c̃i = c̃[ũi, . . . , ũi+n], d̃i = d̃[ũi, . . . , ũi+n], (13)

for i = 0, . . . , L′. The list of knots has been renum-

bered as {ũ0, . . . , ũK′} in order to have correlative

indices.

This construction is useful to solve the following

interpolation problem:

Problem 2: Given a spline curve c(u) of degree n, N

pieces, B-spline polygon {c0, . . . , cL} and list of knots

{u0, . . . , uK}, u ∈ [a, b], a = un−1, b = un+N−1, and

two points d0, dL, find a developable surface b(u, v)

such that c(u, 0) = c(u), c(a, 1) = d0, c(b, 1) = dL.

The procedure for solving this problem is clear:

1. Write the algebraic equation 10 with the B-

spline polygon for c(u), the list of knots and

vectors for the rulings
−−→
c0d0,

−−−→
cLdL and obtain a

solution M∗
0 .

2. Fix Λ∗
0 by choosing d0 in Eq. 11 (σ = 1, but

τ 6= 1 in general).

3. Use the recursivity relation in Eq. 8 for comput-

ing the vertices of d(u).

4. Increase by one the multiplicity of the inner

knots of the boundary curves.

5. Formally raise the degree of c(u) and compute

the new B-spline vertices c̃i with Eq. 5.

6. Choose f(u) so that f(a) = 1, f(b) = 1/τ ,

f(u) =
b− u

b− a
+

1

τ

u− a

b− a
. (14)

7. Use this function to compute the B-spline ver-

tices d̃i for the new boundary curve d̃(u) with

Eq. 13 and Eq. 12.

8. The B-spline polygons {c̃0, . . . , c̃L′},

{d̃0, . . . , d̃L′} form the B-spline net for the

developable patch complying with the prescrip-

tion.

We go back now to Example 2:

Example 3 Consider a spline curve of degree three

and three pieces with B-spline polygon

c0 = (0, 0, 0), c1 = (2, 3, 0), c2 = (4, 3, 0),

c3 = (5, 0, 0), c4 = (7, 2, 1), c5 = (9,−1, 3),

and list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}. For the first

ruling we choose direction v = (0, 0, 2) and for the

last ruling we choose w = (−1, 0, 1). Find a devel-

opable surface patch bounded by c(u), an unknown

curve d̃(u) and the rulings defined by v, w, such that

d̃(0) = c0 + v = (0, 0, 2), d̃(1) = c5 +w = (8,−1, 4).

We already have obtained that the spline curve

with B-spline polygon

d0 = (0, 0, 2), d1 = (1.56, 2.34, 2.08),

d2 = (3.09, 2.29, 2.26), d3 = (3.75,−0.15, 2.55),

d4 = (5.22, 1.42, 3.55), d5 = (6.76,−1.00, 5.24),

and the same list of knots provides a developable

surface patch with the required prescription except

that d5 lies on the final ruling, but it is not (8,−1, 4).

In fact, d5 = c5 + τw with τ = 2.24.

In order to shorten the surface patch so that

the final vertex of the new boundary curve d̃(u) is

(8,−1, 4), we have to raise the degree of the curves

from three to four.

Increasing the multiplicity of the inner knots 0,

0.3, 0.7, 1, we get the new list of knots for the degree-

elevated curves,

{0, 0, 0, 0, 0.3, 0.3, 0.7, 0.7, 1, 1, 1, 1}.

We calculate first the B-spline polygon for c(u)

as a curve of formal degree four with Eq. 5. The

auxiliary points are computed in Appendix A.

c̃0 = c̃[0, 0, 0, 0] = c[0, 0, 0] = (0, 0, 0)

c̃1 = c̃[0, 0, 0, 0.3] =
c[0, 0, 0] + 3c[0, 0, 0.3]

4
= (1.5, 2.25, 0)

c̃2 = c̃[0, 0, 0.3, 0.3] =
c[0, 0, 0.3] + c[0, 0.3, 0.3]

2
= (2.43, 3, 0)

c̃3 = c̃[0, 0.3, 0.3, 0.7]

=
c[0, 0.3, 0.3] + 2c[0, 0.3, 0.7] + c[0.3, 0.3, 0.7]

4
= (3.79, 2.78, 0)
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c̃4 = c̃[0.3, 0.3, 0.7, 0.7]

=
c[0.3, 0.3, 0.7] + c[0.3, 0.7, 0.7]

2
= (4.5, 1.5, 0)

c̃5 = c̃[0.3, 0.7, 0.7, 1]

=
c[0.3, 0.7, 0.7] + 2c[0.3, 0.7, 1] + c[0.7, 0.7, 1]

4
= (5.21, 0.51, 0.14)

c̃6 = c̃[0.7, 0.7, 1, 1] =
c[0.7, 0.7, 1] + c[0.7, 1, 1]

2
= (6.57, 1.57, 0.79)

c̃7 = c̃[0.7, 1, 1, 1] =
3c[0.7, 1, 1] + c[1, 1, 1]

4
= (7.5, 1.25, 1.5)

c̃8 = c̃[1, 1, 1, 1] = c[1, 1, 1] = (9,−1, 3).

Now we have to move the curve d(u) over the

developable surface patch so that the new boundary

curve d̃(u) goes through the endpoints of both rul-

ings, shortening the director vector w(u) by a factor

f(u) as in Eq. 14,

f(u) = (1 − u) +
u

2.24
.

Finally, we use Eq. 12 to compute the B-spline

polygon of the new boundary curve of degree four

that goes through the endpoints of both rulings,

d̃0 = d̃[0, 0, 0, 0] = f(0)d[0, 0, 0] + (1 − f(0))c[0, 0, 0]

= d0 = (0, 0, 2)

d̃1 = d̃[0, 0, 0, 0.3] =
f(0.3)d[0, 0, 0] + 3f(0)d[0, 0, 0.3]

4

+
(1− f(0.3))c[0, 0, 0]3(1− f(0)c[0, 0, 0.3]

4
= (1.17, 1.76, 1.97)

d̃2 = d̃[0, 0, 0.3, 0.3] =
f(0.3)d[0, 0, 0.3] + f(0)d[0, 0.3, 0.3]

2

+
(1− f(0.3))c[0, 0, 0.3] + (1− f(0)c[0, 0.3, 0.3]

2
= (1.93, 2.39, 1.94)

d̃3 = d̃[0, 0.3, 0.3, 0.7] =
f(0.7)d[0, 0.3, 0.3]

4

+
2f(0.3)d[0, 0.3, 0.7] + f(0)d[0.3, 0.3, 0.7]

4

+
(1− f(0.7))c[0, 0.3, 0.3]

4

+
(1− f(0.3))c[0, 0.3, 0.7]

2

+
(1− f(0))c[0.3, 0.3, 0.7]

4
= (3.06, 2.24, 1.86)

d̃4 = d̃[0.3, 0.3, 0.7, 0.7] =
f(0.3)d[0.3, 0.7, 0.7]

2

+
f(0.7)d[0.3, 0.3, 0.7] + (1− f(0.3))c[0.3, 0.7, 0.7]

2

+
(1− f(0.7))c[0.3, 0.3, 0.7]

2
= (3.71, 1.20, 1.74)

d̃5 = d̃[0.3, 0.7, 0.7, 1] =
f(1)d[0.3, 0.7, 0.7]

4

+
2f(0.7)d[0.3, 0.7, 1] + f(0.3)d[0.7, 0.7, 1]

4

+
(1− f(1))c[0.3, 0.7, 0.7]

4

+
(1− f(0.7))c[0.3, 0.7, 1]

2

+
(1− f(0.3))c[0.7, 0.7, 1]

4
= (4.38, 0.35, 1.73)

d̃6 = d̃[0.7, 0.7, 1, 1] =
f(1)d[0.7, 0.7, 1]

2

+
f(0.7)d[0.7, 1, 1] + (1− f(1))c[0.7, 0.7, 1]

2

+
(1− f(0.7))c[0.7, 1, 1]

2
= (5.68, 1.30, 2.14)

d̃7 = d̃[0.7, 1, 1, 1] =
3f(1)d[0.7, 1, 1] + f(0.7)d[1, 1, 1]

4

+
3(1− f(1))c[0.7, 1, 1] + (1− f(0.7))c[1, 1, 1]

4
= (6.56, 1.05, 2.70)

d̃8 = d̃[1, 1, 1, 1] = f(1)d[1, 1, 1]

+ (1− f(1))c[1, 1, 1] = (8,−1, 4).

The degree-elevated B-spline net for the new

surface patch, complying with the requirements of

the example can be seen in Figure 7.

c7
~

d8

~

c0
~

c1
~

c2
~c3

~

c4
~

c5
~

c6
~

c8
~

d7

~

d6

~

d3

~

d2

~

d1

~

d0

~

Fig. 7 Degree-elevation and restriction of the devel-

opable surface patch in Figure 5

We could also have split the original curve c(u)

in three cubic Bézier pieces and raise the degree of

each of them to obtain curves of formally degree four
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with control points,

C̃0 = (0, 0, 0), C̃1 = (1.5, 2.25, 0), C̃2 = (2.43, 3, 0),

C̃3 = (3.01, 2.90, 0), C̃4 = (3.48, 2.61, 0),

C̃5 = (4.09, 2.23, 0), C̃6 = (4.5, 1.5, 0),

C̃7 = (4.910.93, 0.08), C̃8 = (5.52, 1.04, 0.33),

C̃9 = (5.99, 1.12, 0.51), C̃10 = (6.57, 1.57, 0.79),

C̃11 = (7.5, 1.25, 1.5), C̃12 = (9,−1, 3),

and use the construction in Aumann (2004) to extend

each Bézier developable surface patch to comply with

the prescription of endpoints, by multiplication by

the same factor f(u). One reaches the same result

as applying insertion of knots 0, 0.3, 0.7, 1 to d̃(u),

D̃0 = (0, 0, 2), D̃1 = (1.17, 1.76, 1.97),

D̃2 = (1.93, 2.39, 1.94), D̃3 = (2.41, 2.32, 1.91),

D̃4 = (2.81, 2.10, 1.87), D̃5 = (3.34, 1.79, 1.81),

D̃6 = (3.71, 1.20, 1.74), D̃7 = (4.09, 0.71, 1.74),

D̃8 = (4.68, 0.82, 1.86), D̃9 = (5.12, 0.89, 1.96),

D̃10 = (5.68, 1.30, 2.14), D̃11 = (6.56, 1.05, 2.70),

D̃12 = (8,−1, 4).

The boundary rulings of the quartic Bézier de-

velopable surfaces have been marked in Figure 7.

7 Triangular developable surfaces

We may pose another interpolation problem in

which the first ruling collapses to a point, c(a) =

d(a),

b(u, v) = (1 − v)c(u) + vd(u), u ∈ [a, b].

The resulting developable patch is triangular in the

sense that it is bounded by two curves and just one

straight segment. Instead of the first point of the un-

known curve of the boundary, we may give as datum

its initial velocity d′(a).

Problem 3: Given a spline curve c(u) of degree n, N

pieces, B-spline polygon {c0, . . . , cL} and list of knots

{u0, . . . , uK}, u ∈ [a, b], a = un−1, b = un+N−1,

a point dL and a vector d′(a), find a triangular

developable surface b(u, v) through c(u), such that

c(u, 0) = c(u), c(a, v) = c0 for all v, c(b, 1) = dL,

cu(a, 1) = d′(a).

We do not know the first ruling of the surface,

but we may use previous constructions to compute a

spline developable patch through the curve c(u) and

use dL to fix the last ruling,

b(u, v) = c(u) + vw(u), w(u) = d(u)− c(u).

In order to collapse the first ruling to a point,

we shorten the patch along the rulings,

b̂(u, v) = c(u) + vf(u)w(u), f(u) =
u− a

b− a
, (15)

so that ĉ(a, v) = c0 for all v.

We compute the velocity,

b̂u(u, v) = c′(u) +
v

b− a
w(u) + vf(u)w′(u),

of the boundary curve d(u) at u = a, making use of

Eq. 4

d̂′(a) = ĉu(a, 1) = c′(a) +
w(a)

b− a

= n
c1 − c0

un − un−1
+

d0 − c0
b− a

and from this expression we get the vertex d0 that is

necessary for obtaining the velocity d̂′(a),

d0 = c0 + (b− a)

(

d̂′(a)− n
c1 − c0

un − un−1

)

, (16)

Since we need to fix both d0 and dL to obtain the

developable patch b(u, v), the construction from the

previous section is required and hence such a patch

must be of degree n+ 1. Since c(u) is still of degree

n, the calculation done in Eq. 16 is nonetheless valid

whereas we keep the original vertices c0 and c1. Fi-

nally, shortening the surface patch as in Eq. 15 with

f(u) produces a triangular patch of degree n+ 2.

Summarising, the solution of this problem is re-

duced to the one of Problem 2:

1. Calculate the vertex d0 and v = d0 − c0 using

Eq. 16.

2. Write the algebraic equation 10 with the B-

spline polygon for c(u), the list of knots and

vectors for the rulings
−−→
c0d0,

−−−→
cLdL and obtain a

solution M∗
0 .

3. Fix Λ∗
0 by choosing d0 in Eq. 11 (σ = 1, but

τ 6= 1 in general).

4. Use the recursivity relation in Eq. 8 for comput-

ing the vertices of d(u).
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5. Increase by one the multiplicity of the inner

knots of the boundary curves.

6. Formally raise the degree of c(u) and compute

the new B-spline vertices c̃i with Eq. 5.

7. Choose f(u) so that f(a) = 1, f(b) = 1/τ ,

f(u) =
b− u

b− a
+

1

τ

u− a

b− a
.

8. Use this function to compute the B-spline ver-

tices d̃i for the new boundary curve d̃(u) with

Eq. 13 and Eq. 12.

9. Increase by one the multiplicity of the inner

knots of the boundary curves.

10. Formally raise the degree of c̃(u) and compute

the new B-spline vertices ĉi with Eq. 5.

11. Use a function f̂(u) = u to shrink the first ruling

to a point and compute the B-spline vertices d̂i
for the new boundary curve d̂(u) with Eq. 13

and Eq. 12.

12. The B-spline polygons {ĉ0, . . . , ĉL′},

{d̂0, . . . , d̂L′} form the B-spline net for the

triangular developable patch complying with

the prescription.

Example 4 Consider a spline curve of degree three

and three pieces with B-spline polygon

c0 = (0, 0, 0), c1 = (2, 3, 0), c2 = (4, 3, 0),

c3 = (5, 0, 0), c4 = (7, 2, 1), c5 = (9,−1, 3),

and list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}. For the last

ruling we choose direction w = (−1, 0, 1). Find

a triangular developable surface patch bounded by

c(u), an unknown curve d̂(u) and the ruling defined

by w, such that d̂(0) = c0, d̂′(0) = (20, 30.5, 2),

d̂(1) = c5 +w = (8,−1, 4).

First of all, we calculate the first ruling of the

developable surface. According to Eq. 16 we need

v = d0 − c0 = d̂′(0) +
3

0.3
(c0 − c1) = (0, 0.5, 2),

and we calculate the determinant in Eq. 10,

det(a(M∗)− cL,v,w)

=
8M∗4 + 2.6M∗3 − 16M∗2 + 14.5M∗ − 3.5

M∗3(M∗ − 0.3)(M∗ − 0.7)
,

so that developability is granted by choosing param-

eter M∗ as a real solution of

8M∗4 + 2.6M∗3 − 16M∗2 + 14.5M∗ − 3.5 = 0,

that is M∗ = −1.92, 0.38. The other two solutions

are complex.

For having d0 = (0, 0.5, 2) on the first ruling,

we need to take σ = 1 in Eq. 11. The respective

values of parameter Λ∗ are −1.16, 0.59. We choose

the first pair of parameters for our calculations, Λ∗
0 =

−1.16, M∗
0 = 0.59. We calculate next the B-spline

d4

d2

d0

c3

c0

c1
c2 v

w

c4

c5

d5

d1

Fig. 8 Developable surface of degree 3 and 3 pieces

polygon for the second boundary curve according to

Corollary 1,

di+1=
(ui+n − Λ∗)ci+(Λ∗ − ui)ci+1+(M∗ − ui+n)di

M∗ − ui

for i = 0 . . . L− 1.

d0 = (0, 0.5, 2)

d1 =
(u3 − Λ∗)c0 + (Λ∗ − u0)c1 + (M∗ − u3)d0

M∗ − u0

= (1.21, 2.39, 2.31)

d2 =
(u4 − Λ∗)c1 + (Λ∗ − u1)c2 + (M∗ − u4)d1

M∗ − u1

= (2.13, 2.17, 3.16)

d3 =
(u5 − Λ∗)c2 + (Λ∗ − u2)c3 + (M∗ − u5)d2

M∗ − u2

= (1.77,−0.07, 4.80)

d4 =
(u6 − Λ∗)c3 + (Λ∗ − u3)c4 + (M∗ − u6)d3

M∗ − u3

= (2.07, 1.22, 6.97)

d5 =
(u7 − Λ∗)c4 + (Λ∗ − u4)c5 + (M∗ − u7)d4

M∗ − u4

= (2.92,−1.00, 9.08).
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Hence, d5 − c5 = τw, with τ = 6.08. We show

the surface patch in Figure 8.

Next we shorten the surface patch so that the

new boundary curve d̂(u) ends up at (8,−1, 4). From

the previous example we know that we are to increase

the multiplicity of the inner knots by one,

{0, 0, 0, 0, 0.3, 0.3, 0.7, 0.7, 1, 1, 1, 1},

and formally raise the degree of c(u) to four,

c̃0 = (0, 0, 0), c̃1 = (1.5, 2.25, 0), c̃2 = (2.43, 3, 0),

c̃3 = (3.79, 2.78, 0), c̃4 = (4.5, 1.5, 0),

c̃5 = (5.21, 0.51, 0.14), c̃6 = (6.57, 1.57, 0.79),

c̃7 = (7.5, 1.25, 1.5), c̃8 = (9,−1, 3),

and shorten the director vector w(u) by a factor f(u)

as in Eq. 14,

f(u) = (1 − u) +
u

6.08
,

so that the new boundary curve d̃(u) has degree four

and B-spline polygon using Eq. 12, given by

d̃0 = d̃[0, 0, 0, 0] = f(0)d[0, 0, 0] + (1− f(0))c[0, 0, 0]

= d0 = (0, 0.5, 2)

d̃1 = d̃[0, 0, 0, 0.3] =
f(0.3)d[0, 0, 0] + 3f(0)d[0, 0, 0.3]

4

+
(1− f(0.3))c[0, 0, 0] + 3(1− f(0)c[0, 0, 0.3]

4
= (0.91, 1.89, 2.11)

d̃2 = d̃[0, 0, 0.3, 0.3] =
f(0.3)d[0, 0, 0.3] + f(0)d[0, 0.3, 0.3]

2

+
(1− f(0.3))c[0, 0, 0.3] + (1− f(0)c[0, 0.3, 0.3]

2
= (1.51, 2.42, 2.20)

d̃3 = d̃[0, 0.3, 0.3, 0.7] =
f(0.7)d[0, 0.3, 0.3]

4

+
2f(0.3)d[0, 0.3, 0.7] + f(0)d[0.3, 0.3, 0.7]

4

+
(1− f(0.7))c[0, 0.3, 0.3] + 2(1− f(0.3))c[0, 0.3, 0.7]

4

+
(1− f(0))c[0.3, 0.3, 0.7]

4
= (2.39, 2.24, 2.37)

d̃4 = d̃[0.3, 0.3, 0.7, 0.7] =
f(0.3)d[0.3, 0.7, 0.7]

2

+
f(0.7)d[0.3, 0.3, 0.7] + (1 − f(0.3))c[0.3, 0.7, 0.7]

2

=
(1− f(0.7))c[0.3, 0.3, 0.7]

2
= (2.97, 1.26, 2.37)

d̃5 = d̃[0.3, 0.7, 0.7, 1] =
f(1)d[0.3, 0.7, 0.7]

4

+
2f(0.7)d[0.3, 0.7, 1] + f(0.3)d[0.7, 0.7, 1]

4

+
(1− f(1))c[0.3, 0.7, 0.7]

4

+
2(1− f(0.7))c[0.3, 0.7, 1] + (1− f(0.3))c[0.7, 0.7, 1]

4
= (3.64, 0.39, 2.34)

d̃6 = d̃[0.7, 0.7, 1, 1] =
f(1)d[0.7, 0.7, 1] + f(0.7)d[0.7, 1, 1]

2

+
(1− f(1))c[0.7, 0.7, 1] + (1 − f(0.7))c[0.7, 1, 1]

2
= (5.20, 1.37, 2.48)

d̃7 = d̃[0.7, 1, 1, 1] =
3f(1)d[0.7, 1, 1] + f(0.7)d[1, 1, 1]

4

+
3(1− f(1))c[0.7, 1, 1] + (1 − f(0.7))c[1, 1, 1]

4
= (6.26, 1.15, 2.87)

d̃8 = d̃[1, 1, 1, 1] = f(1)d[1, 1, 1] + (1− f(1))c[1, 1, 1]

= (8,−1, 4),

where the auxiliary points are computed with blos-

soms in Appendix B. The result of this restriction of

the surface patch is shown in Figure 9.

c0
~

c1
~

c2
~

c3
~

c4
~

c5
~

c6
~

c7
~c8

~

d8

~

d3

~

d2

~

d1

~

d0

~

Fig. 9 Restriction of the developable surface patch in

Figure 8

Finally, following Eq. 15, we further trim the

surface patch bounded by c(u) and d̃(u) to shrink

the first ruling to the vertex c0.

Since we are raising the degree of the curves

from four to five, we have to increase the multiplicity
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of the inner knots by one,

{0, 0, 0, 0, 0, 0.3, 0.3, 0.3, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1}.

The curve c(u) becomes formally of degree five

using Eq. 5 with B-spline polygon,

ĉ0 = ĉ[0, 0, 0, 0, 0] = c̃[0, 0, 0, 0] = (0, 0, 0)

ĉ1 = ĉ[0, 0, 0, 0, 0.3] =
c̃[0, 0, 0, 0] + 4c̃[0, 0, 0, 0.3]

5
= (1.20, 1.80, 0.0)

ĉ2 = ĉ[0, 0, 0, 0.3, 0.3] =
2c̃[0, 0, 0, 0.3]

5

+
3c̃[0, 0, 0.3, 0.3]

5
= (2.06, 2.70, 0.0)

ĉ3 = ĉ[0, 0, 0.3, 0.3, 0.3] =
3c̃[0, 0, 0.3, 0.3]

5

+
2c̃[0, 0.3, 0.3, 0.3]

5
= (2.66, 2.96, 0.0)

ĉ4 = ĉ[0, 0.3, 0.3, 0.3, 0.7] =
c̃[0, 0.3, 0.3, 0.3]

5

+
3c̃[0, 0.3, 0.3, 0.7] + c̃[0.3, 0.3, 0.3, 0.7]

5
= (3.69, 2.69, 0.0)

ĉ5 = ĉ[0.3, 0.3, 0.3, 0.7, 0.7] =
2c̃[0.3, 0.3, 0.3, 0.7]

5

+
3c̃[0.3, 0.3, 0.7, 0.7]

5
= (4.34, 1.79, 0.0)

ĉ6 = ĉ[0.3, 0.3, 0.7, 0.7, 0.7] =
3c̃[0.3, 0.3, 0.7, 0.7]

5

+
2c̃[0.3, 0.7, 0.7, 0.7]

5
= (4.66, 1.27, 0.03)

ĉ7 = ĉ[0.3, 0.7, 0.7, 0.7, 1] =
c̃[0.3, 0.7, 0.7, 0.7]

5

+
3c̃[0.3, 0.7, 0.7, 1] + c̃[0.7, 0.7, 0.7, 1]

5
= (5.31, 0.72, 0.20)

ĉ8 = ĉ[0.7, 0.7, 0.7, 1, 1] =
2c̃[0.7, 0.7, 0.7, 1]

5

+
3c̃[0.7, 0.7, 1, 1]

5
= (6.34, 1.39, 0.68)

ĉ9 = ĉ[0.7, 0.7, 1, 1, 1] =
3c̃[0.7, 0.7, 1, 1]

5

+
2c̃[0.7, 1, 1, 1]

5
= (6.94, 1.44, 1.07)

ĉ10 = ĉ[0.7, 1, 1, 1, 1] =
4c̃[0.7, 1, 1, 1] + c̃[1, 1, 1, 1]

5
= (7.80, 0.80, 1.80)

ĉ11 = ĉ[1, 1, 1, 1, 1] = c̃[1, 1, 1, 1] = (9,−1, 3),

and following Eq. 15, we shrink the rulings with a

factor f̂(u) = u. The auxiliary points are computed

using the multiaffinity property of blossoms in Ap-

pendix C.

Making use of Eq. 12, we obtain the B-spline

polygon of the final boundary curve d̂(u) of degree

five,

d̂0 = d̂[0, 0, 0, 0, 0] = f̂(0)d̃[0, 0, 0, 0]

+ (1 − f̂(0))c̃[0, 0, 0, 0] = c̃0 = (0, 0, 0)

d̂1 = d̂[0, 0, 0, 0, 0.3] =
f̂(0.3)d̃[0, 0, 0, 0]

5

+
4f̂(0)d̃[0, 0, 0, 0.3] + (1− f̂(0.3))c̃[0, 0, 0, 0]

5

+
4(1− f̂(0)c̃[0, 0, 0, 0.3]

5
= (1.20, 1.83, 0.12)

d̂2 = d̂[0, 0, 0, 0.3, 0.3] =
2f̂(0.3)d̃[0, 0, 0, 0.3]

5

+
3f̂(0)d̃[0, 0, 0.3, 0.3] + 2(1− f̂(0.3))c̃[0, 0, 0, 0.3]

5

+
3(1− f̂(0)c̃[0, 0, 0.3, 0.3]

5
= (1.99, 2.66, 0.25)

d̂3 = d̂[0, 0, 0.3, 0.3, 0.3] =
3f̂(0.3)d̃[0, 0, 0.3, 0.3]

5

+
2f̂(0)d̃[0, 0.3, 0.3, 0.3] + 3(1− f̂(0.3))c̃[0, 0, 0.3, 0.3]

5

+
2(1− f̂(0)c̃[0, 0.3, 0.3, 0.3]

5
= (2.50, 2.86, 0.40)

d̂4 = d̂[0, 0.3, 0.3, 0.3, 0.7] =
f̂(0.7)d̃[0, 0.3, 0.3, 0.3]

5

+
3f̂(0.3)d̃[0, 0.3, 0.3, 0.7] + f̂(0)d̃[0.3, 0.3, 0.3, 0.7]

5

+
(1 − f̂(0.7))c̃[0, 0.3, 0.3, 0.3]

5

+
3(1− f̂(0.3))c̃[0, 0.3, 0.3, 0.7]

5

+
(1− f̂(0))c̃[0.3, 0.3, 0.3, 0.7]

5
= (3.29, 2.52, 0.75)

d̂5 = d̂[0.3, 0.3, 0.3, 0.7, 0.7] =
2f̂(0.7)d̃[0.3, 0.3, 0.3, 0.7]

5

+
3f̂(0.3)d̃[0.3, 0.3, 0.7, 0.7]

5

+
2(1− f̂(0.7))c̃[0.3, 0.3, 0.3, 0.7]

5

+
3(1− f̂(0.3))c̃[0.3, 0.3, 0.7, 0.7]

5
+ (3.65, 1.64, 1.09)
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d̂6 = d̂[0.3, 0.3, 0.7, 0.7, 0.7] =
3f̂(0.7)d̃[0.3, 0.3, 0.7, 0.7]

5

+
2f̂(0.3)d̃[0.3, 0.7, 0.7, 0.7]

5

+
3(1− f̂(0.7))c̃[0.3, 0.3, 0.7, 0.7]

5

+
2(1− f̂(0.3))c̃[0.3, 0.7, 0.7, 0.7]

5
+ (3.83, 1.15, 1.30)

d̂7 = d̂[0.3, 0.7, 0.7, 0.7, 1] =
f̂(1)d̃[0.3, 0.7, 0.7, 0.7]

5

+
3f̂(0.7)d̃[0.3, 0.7, 0.7, 1] + f̂(0.3)d̃[0.7, 0.7, 0.7, 1]

5

+
(1− f̂(1))c̃[0.3, 0.7, 0.7, 0.7]

5

+
3(1− f̂(0.7))c̃[0.3, 0.7, 0.7, 1]

5

+
(1− f̂(0.3))c̃[0.7, 0.7, 0.7, 1]

5
= (4.25, 0.62, 1.70)

d̂8 = d̂[0.7, 0.7, 0.7, 1, 1] =
2f̂(1)d̃[0.7, 0.7, 0.7, 1]

5

+
3f̂(0.7)d̃[0.7, 0.7, 1, 1] + 2(1− f̂(1))c̃[0.7, 0.7, 0.7, 1]

5

+
3(1− f̂(0.7))c̃[0.7, 0.7, 1, 1]

5
= (5.18, 1.24, 2.15)

d̂9 = d̂[0.7, 0.7, 1, 1, 1] =
3f̂(1)d̃[0.7, 0.7, 1, 1]

5

+
2f̂(0.7)d̃[0.7, 1, 1, 1] + 3(1− f̂(1))c̃[0.7, 0.7, 1, 1]

5

+
2(1− f̂(0.7))c̃[0.7, 1, 1, 1]

5
= (5.77, 1.30, 2.47)

d̂10 = d̂[0.7, 1, 1, 1, 1] =
4f̂(1)d̃[0.7, 1, 1, 1]

5

+
f̂(0.7)d̃[1, 1, 1, 1] + 4(1− f̂(1))c̃[0.7, 1, 1, 1]

5

+
(1− f̂(0.7))c̃[1, 1, 1, 1]

5
= (6.67, 0.72, 3.03)

d̂11 = d̂[1, 1, 1, 1, 1] = f̂(1)d̃[1, 1, 1, 1]

+ (1− f̂(1))c̃[1, 1, 1, 1] = d̃11 = (8,−1, 4).

The triangular B-spline net for the surface patch

which satisfies the requirements of the example is

shown in Figure 10. We check that in fact the veloc-

ity of the boundary curve d̂(u) of degree n = 5 is as

c0^

c1^

c2^
c3^c4^

c5^

c6^c7^

c8^
c9^

c10^
c11^

d11
^

d10
^

d9
^

d8
^

d0
^

d1
^

d2
^d3

^

d4
^

d5
^

Fig. 10 Restriction to a triangular patch of the de-

velopable surface patch in Figure 9

prescribed,

d̂′(0) = n
d̂1 − d̂0

ûn − ûn−1
=

5

0.3
(1.20, 1.83, 0.12)

= (20.00, 30.50, 2.00).

8 Conclusions

We have made use of a procedure of degree ele-

vation for obtaining spline developable surfaces from

which we know the segments of the first and last

rulings and one of the curves of the boundary. It

consists of first solving the problem with free end-

points of the rulings and then moving the resulting

boundary curve along the rulings to match the end-

points and increase the degree of the curves by one.

This solution is also used to solve the problem of

finding a triangular spline developable patch from

which we know the last ruling, one of the curves of

the boundary and the initial velocity of the other

curve.
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A Auxiliary points for c(u)

We perform here calculations of auxiliary

points for the curve c(u) over the list of knots

{0, 0, 0, 0.3, 0.7, 1, 1, 1} which are needed for Exam-

ple 3, taking into account that blossoms are multi-

affine Eq. (5):

c[0, 0, 0]= c0 = C0 = (0, 0, 0)

c[0, 0, 0.3]= c1 = C1 = (2, 3, 0)

c[0, 0.3, 0.3]=C2 =
0.7− 0.3

0.7− 0
c[0, 0, 0.3]

+
0.3− 0

0.7− 0
c[0, 0.7, 0.3] =

0.4c1 + 0.3c2
0.7

= (2.86, 3, 0)

c[0, 0.3, 0.7]= c2 = (4, 3, 0)

c[0.3, 0.3, 0.3]=C3 =
0.7− 0.3

0.7− 0
c[0, 0.3, 0.3]

+
0.3− 0

0.7− 0
c[0.3, 0.3, 0.7] =

0.4C2 + 0.3C4

0.7
= (3.48, 2.61, 0)

c[0.3, 0.3, 0.7]=C4 =
1− 0.3

1− 0
c[0, 0.3, 0.7]

+
0.3− 0

1− 0
c[1, 0.3, 0.7]

= 0.7c2 + 0.3c3 = (4.3, 2.1, 0)

c[0.3, 0.7, 0.7]=C5 =
1− 0.7

1− 0
c[0, 0.3, 0.7]

+
0.7− 0

1− 0
c[1, 0.3, 0.7] = 0.3c2 + 0.7c3

=(4.7, 0.9, 0)

c[0.3, 0.7, 1]= c3 = (5, 0, 0)

c[0.7, 0.7, 0.7]=C6 =
1− 0.7

1− 0.3
c[0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
c[0.7, 0.7, 1] =

0.3C5 + 0.4C7

0.7
= (5.52, 1.04, 0.33)

c[0.7, 0.7, 1]=C7 =
1− 0.7

1− 0.3
c[0.3, 0.7, 1]

+
0.7− 0.3

1− 0.3
c[1, 0.7, 1] =

0.3c3 + 0.4c4
0.7

= (6.14, 1.14, 0.57)

c[0.7, 1, 1]= c4 = C8 = (7, 2, 1)

c[1, 1, 1]= c5 = C9 = (9,−1, 3).

And similarly for d(u),

d[0, 0, 0]= d0 = D0 = (0, 0, 2)

d[0, 0, 0.3]= d1 = D1 = (1.56, 2.34, 2.08)

d[0, 0.3, 0.3]=D2 =
0.7− 0.3

0.7− 0
d[0, 0, 0.3]

+
0.3− 0

0.7− 0
d[0, 0.7, 0.3] =

0.4d1 + 0.3d2
0.7

= (2.21, 2.32, 2.15)

d[0.3, 0.3, 0.3]=D3 =
0.7− 0.3

0.7− 0
d[0, 0.3, 0.3]

+
0.3− 0

0.7− 0
d[0.3, 0.3, 0.7] =

0.4D2 + 0.3D4

0.7
= (2.67, 1.99, 2.24)

d[0, 0.3, 0.7]= d2 = (3.09, 2.29, 2.26)

d[0.3, 0.3, 0.7]=D4 =
1− 0.3

1− 0
d[0, 0.3, 0.7]

+
0.3− 0

1− 0
d[1, 0.3, 0.7] = 0.7d2 + 0.3d3

=(3.29, 1.56, 2.35)

d[0.3, 0.7, 0.7]=D5 =
1− 0.7

1− 0
d[0, 0.3, 0.7]

+
0.7− 0

1− 0
d[1, 0.3, 0.7] = 0.3d2 + 0.7d3

=(3.55, 0.58, 2.46)

d[0.3, 0.7, 1]= d3 = (3.75,−0.15, 2.55)

d[0.7, 0.7, 0.7]=D6 =
1− 0.7

1− 0.3
d[0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
d[0.7, 0.7, 1] =

0.3D5 + 0.4D7

0.7
= (4.15, 0.68, 2.84)

d[0.7, 0.7, 1]=D7 =
1− 0.7

1− 0.3
d[0.3, 0.7, 1]

+
0.7− 0.3

1− 0.3
d[1, 0.7, 1] =

0.3d3 + 0.4d4
0.7

= (4.59, 0.75, 3.12)

d[0.7, 1, 1]= d4 = D8 = (5.22, 1.42, 3.55)

d[1, 1, 1]= d5 = D9 = (6.76,−1.00, 5.24).

B Auxiliary points for d(u)

We compute here auxiliary points for the curve

d(u) over the list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}

which are needed for Example 4, using the property

of multiaffinity (Eq. 5) for blossoms:

d[0, 0, 0]= d0 = (0, 0.5, 2)

d[0, 0, 0.3]= d1 = (1.21, 2.39, 2.31)
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d[0, 0.3, 0.3]=
0.7− 0.3

0.7− 0
d[0, 0, 0.3]

+
0.3− 0

0.7− 0
d[0, 0.7, 0.3] =

0.4d1 + 0.3d2
0.7

= (1.61, 2.30, 2.67)

d[0, 0.3, 0.7]= d2 = (2.13, 2.17, 3.16)

d[0.3, 0.3, 0.7]=
1− 0.3

1− 0
d[0, 0.3, 0.7]

+
0.3− 0

1− 0
d[1, 0.3, 0.7] = 0.7d2 + 0.3d3

=(2.02, 1.50, 3.65)

d[0.3, 0.7, 0.7]=
1− 0.7

1− 0
d[0, 0.3, 0.7]

+
0.7− 0

1− 0
d[1, 0.3, 0.7] = 0.3d2 + 0.7d3

=(1.88, 0.60, 4.31)

d[0.3, 0.7, 1]= d3 = (1.77,−0.07, 4.80)

d[0.7, 0.7, 1]=
1− 0.7

1− 0.3
d[0.3, 0.7, 1]

+
0.7− 0.3

1− 0.3
d[1, 0.7, 1] =

0.3d3 + 0.4d4
0.7

= (1.94, 0.67, 6.04)

d[0.7, 1, 1]= d4 = (2.07, 1.22, 6.97)

d[1, 1, 1]= d5 = (2.92,−1.00, 9.08).

C Auxiliary points for c̃(u)

Finally we calculate the auxiliary points

which are necessary to formally raise the de-

gree of the curve c̃(u) with list of knots

{0, 0, 0, 0, 0.3, 0.3, 0.7, 0.7, 1, 1, 1, 1} from four to five

using the property of multiaffinity (Eq. 5) for blos-

soms:

c̃[0, 0, 0, 0]= c̃0 = (0, 0, 0)

c̃[0, 0, 0, 0.3]= c̃1 = (1.50, 2.25, 0.00)

c̃[0, 0, 0.3, 0.3]= c̃2 = (2.43, 3.00, 0.00)

c̃[0, 0.3, 0.3, 0.3]=
0.7− 0.3

0.7− 0
c̃[0, 0, 0.3, 0.3]

+
0.3− 0

0.7− 0
c̃[0, 0.7, 0.3, 0.3]

=
0.4c̃2 + 0.3c̃3

0.7
= (3.01, 2.90, 0.00)

c̃[0, 0.3, 0.3, 0.7]= c̃3 = (3.79, 2.78, 0.00)

c̃[0.3, 0.3, 0.3, 0.7]=
0.7− 0.3

0.7− 0
c̃[0, 0.3, 0.3, 0.7]

+
0.3− 0

0.7− 0
c̃[0.7, 0.3, 0.3, 0.7]

=
0.4c̃3 + 0.3c̃4

0.7
= (4.09, 2.23, 0.00)

c̃[0.3, 0.3, 0.7, 0.7]= c̃4 = (4.50, 1.50, 0.00)

c̃[0.3, 0.7, 0.7, 0.7]=
1− 0.7

1− 0.3
c̃[0.3, 0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
c̃[1, 0.3, 0.7, 0.7]

=
0.3c̃4 + 0.4c̃5

0.7
= (4.91, 0.93, 0.08)

c̃[0.3, 0.7, 0.7, 1]= c̃5 = (5.21, 0.51, 0.14)

c̃[0.7, 0.7, 0.7, 1]=
1− 0.7

1− 0.3
c̃[0.3, 0.7, 0.7, 1]

+
0.7− 0.3

1− 0.3
c̃[1, 0.7, 0.7, 1]

=
0.3c̃5 + 0.4c̃6

0.7
= (5.99, 1.12, 0.51)

c̃[0.7, 0.7, 1, 1]= c̃6 = (6.57, 1.57, 0.79)

c̃[0.7, 1, 1, 1]= c̃7 = (7.50, 1.25, 1.50)

c̃[1, 1, 1, 1]= c̃8 = (9,−1, 3).

And similarly for d̃(u),

d̃[0, 0, 0, 0]= d̃0 = (0, 0.5, 2)

d̃[0, 0, 0, 0.3]= d̃1 = (0.91, 1.89, 2.11)

d̃[0, 0, 0.3, 0.3]= d̃2 = (1.51, 2.42, 2.20)

d̃[0, 0.3, 0.3, 0.3]=
0.7− 0.3

0.7− 0
d̃[0, 0, 0.3, 0.3]

+
0.3− 0

0.7− 0
d̃[0, 0.7, 0.3, 0.3]

=
0.4d̃2 + 0.3d̃3

0.7
= (1.89, 2.35, 2.28)

d̃[0, 0.3, 0.3, 0.7]= d̃3 = (2.39, 2.24, 2.37)

d̃[0.3, 0.3, 0.3, 0.7]=
0.7− 0.3

0.7− 0
d̃[0, 0.3, 0.3, 0.7]

+
0.3− 0

0.7− 0
d̃[0.7, 0.3, 0.3, 0.7]

=
0.4d̃3 + 0.3d̃4

0.7
= (2.64, 1.82, 2.37)

d̃[0.3, 0.3, 0.7, 0.7]= d̃4 = (2.97, 1.26, 2.37)

d̃[0.3, 0.7, 0.7, 0.7]=
1− 0.7

1− 0.3
d̃[0.3, 0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
d̃[1, 0.3, 0.7, 0.7]

=
0.3d̃4 + 0.4d̃5

0.7
= (3.35, 0.77, 2.35)

d̃[0.3, 0.7, 0.7, 1]= d̃5 = (3.64, 0.39, 2.34)

d̃[0.7, 0.7, 0.7, 1]=
1− 0.7

1− 0.3
d̃[0.3, 0.7, 0.7, 1]

+
0.7− 0.3

1− 0.3
d̃[1, 0.7, 0.7, 1]

=
0.3d̃5 + 0.4d̃6

0.7
= (4.53, 0.95, 2.42)



Cantón et al. / J Zhejiang Univ-Sci C (Comput & Electron) 19

d̃[0.7, 0.7, 1, 1]= d̃6 = (5.20, 1.37, 2.48)

d̃[0.7, 1, 1, 1]= d̃7 = (6.26, 1.15, 2.87)

d̃[1, 1, 1, 1]= d̃8 = (8,−1, 4).
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