Skip to main content
Log in

Building a dense surface map incrementally from semi-dense point cloud and RGBimages

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Building and using maps is a fundamental issue for bionic robots in field applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amenta, N., Bern, M., 1999. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom., 22(4):481–504. [doi:10.1007/PL00009475]

    Article  MathSciNet  Google Scholar 

  • Amenta, N., Choi, S., Kolluri, R.K., 2001. The power crust. Proc. 6th ACM Symp. on Solid Modeling and Applications, p.249-266. [doi:10.1145/376957.376986]

  • Bajaj, C.L., Bernardini, F., Xu, G., 1997. Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica, 19(1-2):243–261. [doi:10.1007/PL00014418]

    Article  MathSciNet  Google Scholar 

  • Básaca-Preciado, L.C., Sergiyenko, O.Y., Rodríguez-Quinonez, J.C., et al., 2014. Optical 3D laser measurement system for navigation of autonomous mobile robot. Opt. Lasers Eng., 54:159–169. [doi:10.1016/j.optlaseng.2013.08.005]

    Article  Google Scholar 

  • Cole, D.M., Newman, P.M., 2006. Using laser range data for 3D SLAM in outdoor environments. Proc. IEEE Int. Conf. on Robotics and Automation, p.1556-1563. [doi:10.1109/ROBOT.2006.1641929]

  • Crossno, P., Angel, E., 1999. Spiraling edge: fast surface reconstruction from partially organized sample points. Proc. Conf. on Visualization, p.317-324.

  • Dey, T.K., Wang, L., 2013. Voronoi-based feature curves extraction for sampled singular surfaces. Comput. Graph., 37(6):659–668. [doi:10.1016/j.cag.2013.05.014]

    Article  Google Scholar 

  • Dey, T.K., Giesen, J., Hudson, J., 2001. Delaunay based shape reconstruction from large data. Proc. IEEE Symp. on Parallel and Large-Data Visualization and Graphics, p.19-146. [doi:10.1109/PVGS.2001.964399]

  • Dey, T.K., Dyer, R., Wang, L., 2011. Localized Cocone surface reconstruction. Comput. Graph., 35(3):483–491. [doi:10.1016/j.cag.2011.03.014]

    Article  Google Scholar 

  • Dey, T.K., Ge, X., Que, Q., et al., 2012. Feature-preserving reconstruction of singular surfaces. Comput. Graph. Forum, 31(5):1787–1796. [doi:10.1111/j.1467-8659.2012.03183.x]

    Article  Google Scholar 

  • Felzenszwalb, P.F., Huttenlocher, D.P., 2004. Efficient graphbased image segmentation. Int. J. Comput. Vis., 59(2):167–181. [doi:10.1023/B:VISI.0000022288.19776.77]

    Article  Google Scholar 

  • Gopi, M., Krishnan, S., 2002. A fast and efficient projection-based approach for surface reconstruction. Proc. Brazilian Symp. on Computer Graphics and Image Processing, p.179-186. [doi:10.1109/SIBGRA.2002.1167141]

  • Holz, D., Behnke, S., 2013. Fast range image segmentation and smoothing using approximate surface reconstruction and region growing. Proc. 12th Int. Conf. on Intelligent Autonomous Systems, p.61-73. [doi:10.1007/978-3-642-33932-5_7]

  • Huang, H., Wu, S., Gong, M., et al., 2013. Edge-aware point set resampling. ACM Trans. Graph., 32(1):Article 9. [doi:10.1145/2421636.2421645]

    Article  Google Scholar 

  • Lin, J., Jin, X., Wang, C., et al., 2008. Mesh composition on models with arbitrary boundary topology. IEEE Trans. Visual. Comput. Graph., 14(3):653–665. [doi:10.1109/TVCG.2007.70632]

    Article  Google Scholar 

  • Lopez, M.R., Sergiyenko, O.Y., Tyrsa, V.V., et al., 2010. Optoelectronic method for structural health monitoring. Struct. Health Monit., 9(2):105–120. [doi:10.1177/1475921709340975]

    Article  Google Scholar 

  • Lou, R., Pernot, J.P., Mikchevitch, A., et al., 2010. Merging enriched finite element triangle meshes for fast prototyping of alternate solutions in the context of industrial maintenance. Comput.-Aid. Des., 42(8):670–681. [doi:10.1016/j.cad.2010.01.002]

    Article  Google Scholar 

  • Marton, Z.C., Rusu, R.B., Beetz, M., 2009. On fast surface reconstruction methods for large and noisy point clouds. Proc. IEEE Int. Conf. on Robotics and Automation, p.3218-3223. [doi:10.1109/ROBOT.2009.5152628]

  • Maurelli, F., Droeschel, D., Wisspeintner, T., et al., 2009. A 3D laser scanner system for autonomous vehicle navigation. Proc. Int. Conf. on Advanced Robotics, p.1-6.

  • Newcombe, R.A., Izadi, S., Hilliges, O., et al., 2011. Kinect-Fusion: real-time dense surface mapping and tracking. Proc. 10th IEEE Int. Symp. on Mixed and Augmented Reality, p.127-136. [doi:10.1109/ISMAR.2011.6092378]

  • Nüchter, A., Lingemann, K., Hertzberg, J., et al., 2007. 6D SLAM—3D mapping outdoor environments. J. Field Robot., 24(8-9):699–722. [doi:10.1002/rob.20209]

    Article  Google Scholar 

  • Pandey, G., McBride, J., Savarese, S., et al., 2010. Extrinsic calibration of a 3D laser scanner and an omnidirectional camera. Proc. 7th IFAC Symp. on Intelligent Autonomous Vehicles.

  • Rusu, R.B., Marton, Z.C., Blodow, N., et al., 2008. Towards 3D point cloud based object maps for household environments. Robot. Auton. Syst., 56(11):927–941. [doi:10.1016/j.robot.2008.08.005]

    Article  Google Scholar 

  • Schadler, M., Stückler, J., Behnke, S., et al., 2014. Rough terrain 3D mapping and navigation using a continuously rotating 2D laser scanner. Künstl. Intell., 28(2):93–99. [doi:10.1007/s13218-014-0301-8]

    Article  Google Scholar 

  • Sheehan, M., Harrison, A., Newman, P., 2012. Selfcalibration for a 3D laser. Int. J. Robot. Res., 31(5): 675–687. [doi:10.1177/0278364911429475]

    Article  Google Scholar 

  • Wang, Y.B., Sheng, Y.H., Lv, G.N., et al., 2007. A Delaunaybased surface reconstrution algorithm for unorganized sampling points. J. Image Graph., 12(9):1537–1543 (in Chinese).

    Google Scholar 

  • Whelan, T., Kaess, M., Fallon, M., et al., 2012. Kintinuous: Spatially Extended KinectFusion. Technical Report No. MIT-CSAIL-TR-2012-020. Massachusetts Institute of Technology, USA.

  • Wulf, O., Wagner, B., 2003. Fast 3D scanning methods for laser measurement systems. Proc. Int. Conf. on Control Systems and Computer Science, p.2-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Xiong.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61075078 and 61473258)

ORCID: Qian-shan LI, http://orcid.org/0000-0003-0370-7100

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Qs., Xiong, R., Huang, S. et al. Building a dense surface map incrementally from semi-dense point cloud and RGBimages. Frontiers Inf Technol Electronic Eng 16, 594–606 (2015). https://doi.org/10.1631/FITEE.14a0260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.14a0260

Keywords

CLC number

Navigation