Skip to main content
Log in

Fault evolution-test dependency modeling for mechanical systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Tracking the process of fault growth in mechanical systems using a range of tests is important to avoid catastrophic failures. So, it is necessary to study the design for testability (DFT). In this paper, to improve the testability performance of mechanical systems for tracking fault growth, a fault evolution-test dependency model (FETDM) is proposed to implement DFT. A testability analysis method that considers fault trackability and predictability is developed to quantify the testability performance of mechanical systems. Results from experiments on a centrifugal pump show that the proposed FETDM and testability analysis method can provide guidance to engineers to improve the testability level of mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alabakhshizadeh, A., Iskandarani, Y., Hovland, G., et al., 2011. Analysis, modeling and simulation of mechatronic systems using the Bond Graph method. Model. Identif. Contr., 32(1):35–45. [doi:10.4173/mic.2011.1.3]

    Article  Google Scholar 

  • Biswas, G., Mahadevan, S., 2007. A hierarchical model-based approach to systems health management. Proc. IEEE Aerospace Conf., p.1–14. [doi:10.1109/AERO.2007.352943]

    Google Scholar 

  • Byington, C.S., Watson, M., Edwards, D., et al., 2004. A model-based approach to prognostics and health management for flight control actuators. Proc. IEEE Aerospace Conf., p.3551–3562. [doi:10.1109/AERO.2004.1368172]

    Google Scholar 

  • Deb, S., Pattipati, K.R., Raghavan, V., et al., 1995. Multisignal flow graphs: a novel approach for system testability analysis and fault diagnosis. IEEE Aerosp. Electron. Syst. Mag., 10(5):14–25. [doi:10.1109/62.373993]

    Article  Google Scholar 

  • Gao, Y.C., Feng, Y.X., Tan, J.R., 2014. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 15(11):862–872. [doi:10.1631/jzus.A1400102]

    Article  Google Scholar 

  • Hess, A., Stecki, J.S., Rudov-Clark, S.D., 2008. The maintenance aware design environment: development of an aerospace PHM software tool. Proc. Conf. on Prognostics and Health Management, p.1–9.

    Google Scholar 

  • Johnson, J., 2008. Fault Propagation Timing Analysis to Aid in the Selection of Sensors for Health Management Systems. MS Thesis, University of Missouri-Rolla, USA.

    Google Scholar 

  • Kallesøe, C., 2005. Fault Detection and Isolation in Centrifugal Pumps. PhD Thesis, Aalborg University, Denmark.

    Google Scholar 

  • Kurtoglu, T., Tumer, I.Y., 2008. A graph-based fault identification and propagation framework for functional design of complex system. J. Mech. Des., 130(5):051401.1–051401.8. [doi:10.1115/1.2885181]

    Article  Google Scholar 

  • Lin, C., Hayes, L., Malais, A., et al., 1998. A new dependency model based testability analyzer. Proc. IEEE Systems Readiness Technology Conf., p.187–191. [doi:10.1109/ AUTEST.1998.713442]

    Google Scholar 

  • Pattipati, K.R., Raghavan, V., Shakeri, M., et al., 1994. TEAMS: testability engineering and maintenance system. Proc. American Control Conf., p.1989–1995. [doi:10.1109/ACC.1994.752424]

    Google Scholar 

  • Sheppard, J.W., 1996. Maintaining diagnostic truth with information flow models. Proc. IEEE Conf. Record Test Technology and Commercialization, p.447–454. [doi:10. 1109/AUTEST.1996.547773]

    Google Scholar 

  • Simpson, W.R., Balaban, H.S., 1982. The ARINC research system testability and maintenance program (STAMP). Proc. IEEE AUTOTESTCON Conf., p.88–95.

    Google Scholar 

  • Simpson, W.R., Sheppard, J.W., Unkle, C.R., 1989. POINTER—an intelligent maintenance aid. Proc. IEEE Automatic Testing Conf., p.26–31. [doi:10.1109/AUTEST.1989.81094]

    Google Scholar 

  • Stone, R.B., Wood, K.L., 2000. Development of a functional basis for design. J. Mech. Des., 122(4):359–370. [doi:10.1115/1.1289637]

    Article  Google Scholar 

  • Tan, X.D., Qiu, J., Liu, G.J., et al., 2013. A novel approach of testability modeling and analysis for PHM systems based on failure evolution mechanism. Chin. J. Aeronaut., 26(3):766–776. [doi:10.1016/j.cja.2013.04.044]

    Article  Google Scholar 

  • Yang, S.M., Qiu, J., Liu, G.J., 2014. Hierarchical model-based approach to testability modeling and analysis for PHM of aerospace systems. J. Aerosp. Eng., 27(1):131–139. [doi:10.1061/(ASCE)AS.1943-5525.0000203]

    Article  Google Scholar 

  • Zhang, G.F., 2005. Optimum Sensor Localization/Selection in a Diagnostic/Prognostic Architecture. PhD Thesis, Georgia Institute of Technology, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-dong Tan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61403408)

ORCID: Xiao-dong TAN, http://orcid.org/0000-0001-5458-7693

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Xd., Luo, Jl., Li, Q. et al. Fault evolution-test dependency modeling for mechanical systems. Frontiers Inf Technol Electronic Eng 16, 848–857 (2015). https://doi.org/10.1631/FITEE.1500011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500011

Keywords

Document code

CLC number

Navigation