Skip to main content
Log in

A novel period estimation method for X-ray pulsars based on frequency subdivision

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Period estimation of X-ray pulsars plays an important role in X-ray pulsar based navigation (XPNAV). The fast Lomb periodogram is suitable for period estimation of X-ray pulsars, but its performance in terms of frequency resolution is limited by data length and observation time. Longer observation time or oversampling can be employed to improve frequency analysis results, but with greatly increased computational complexity and large amounts of sampling data. This greatly restricts real-time autonomous navigation based on X-ray pulsars. To resolve this issue, a new method based on frequency subdivision and the continuous Lomb periodogram (CLP) is proposed to improve precision of period estimation using short-time observation data. In the proposed method, an initial frequency is first calculated using fast Lomb periodogram. Then frequency subdivision is performed near the initial frequency to obtain frequencies with higher precision. Finally, a refined period is achieved by calculating the CLP in the obtained frequencies. Real data experiments show that when observation time is shorter than 135 s, the proposed method improves period estimation precision by 1–3 orders of magnitude compared with the fast Lomb periodogram and fast Fourier transform (FFT) methods, with only a slight increase in computational complexity. Furthermore, the proposed method performs better than efsearch (a period estimation method of HEAsoft) with lower computational complexity. The proposed method is suitable for estimating periods of X-ray pulsars and obtaining the rotation period of variable stars and other celestial bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chester, T.J., Butman, S.A., 1981. Navigation Using X-Ray Pulsers. TDA Progress Report 42–63, p.22–25.

    Google Scholar 

  • Emadzadeh, A.A., Speyer, J.L., 2011. Relative navigation between two spacecraft using X-ray pulsars. IEEE Trans. Contr. Syst. Technol., 19(5):1021–1035. [doi:10.1109/TCST.2010.2068049]

    Article  Google Scholar 

  • Feng, D.J., Xu, L.P., Zhang, H., et al., 2013. Determination of inter-satellite relative position using X-ray pulsars. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(2): 133–142. [doi:10.1631/jzus.C12a0142]

    Article  Google Scholar 

  • Ge, M.Y., 2012. The X-Ray Emission of Pulsar. PhD Thesis, University of Chinese Academy of Sciences, China (in Chinese).

    Google Scholar 

  • Hanson, J.E., 1996. Principles of X-Ray Navigation. SLAC-Report-809, Stanford University, USA.

    Google Scholar 

  • Hu, G.S., 2003. Digital Signal Processing: Theory, Methods and Implementation. Tsinghua University Press, China (in Chinese).

    Google Scholar 

  • Jenkins, J.S., Yoma, N.B., Rojo, P., et al., 2014. Improved signal detection algorithms for unevenly sampled data. Six signals in the radial velocity data for GJ876. Mon. Not. R. Astron. Soc., 441(3):2253–2265. [doi:10.1093/mnras/stu683]

    Article  Google Scholar 

  • Kaspi, V.M., Taylor, J.H., Ryba, M.F., 1994. High-precision timing of millisecond pulsars. III: long-term monitoring of PSRs B1855+09 and B1937+21. Astrophys. J., 428(2):713–728.

    Article  Google Scholar 

  • Laguna, P., Moody, G.B., Mark, R.G., 1998. Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans. Biomed. Eng., 45(6):698–715. [doi:10.1109/10.678605]

    Article  Google Scholar 

  • Leahy, D.A., Darbro, W., Elsner, R.F., et al., 1983. On searches for pulsed emission with application to four globular cluster X-ray sources: NGC 1851, 6441, 6624, and 6712. Astrophys. J., 266:160–170.

    Article  Google Scholar 

  • Li, J.X., Ke, X.Z., 2010. Period estimation method for weak pulsars based on coherent statistic of cyclostationary signal. Acta Phys. Sin., 59(11):8304–8310 (in Chinese).

    Google Scholar 

  • Li, J.X., Ke, X.Z., Zhao, B.S., 2012. A new time-domain estimation method for period of pulsars. Acta Phys. Sin., 61(6):069701.1–069701.7 (in Chinese).

    Google Scholar 

  • Liu, J., Ma, J., Tian, J.W., et al., 2012. Pulsar navigation for interplanetary missions using CV model and ASUKF. Aerosp. Sci. Technol., 22(1):19–23. [doi:10.1016/j.ast.2011.04.010]

    Article  Google Scholar 

  • Liu, J., Fang, J.C., Ning, X.L., et al., 2014. Closed-loop EKF-based pulsar navigation for Mars explorer with Doppler effects. J. Navig., 67(5):776–790. [doi:10.1017/S0373463314000216]

    Article  Google Scholar 

  • Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39(2): 447–462. [doi:10.1007/BF00648343]

    Article  Google Scholar 

  • Lyne, A.G., Graham-Smith, F., 2006. Pulsar Astronomy. Cambridge University Press, UK.

    Google Scholar 

  • Manchester, R.N., Taylor, J.H., 1977. Pulsars. W. H. Freeman, San Francisco, USA.

    Google Scholar 

  • Mao, Y., 2009. Research on X-Ray Pulsar Navigation Algorithms. PhD Thesis, The PLA Information Engineering University, Zhengzhou, China (in Chinese).

    Google Scholar 

  • Matsakis, D.N., Taylor, J.H., Eubanks, T.M., 1997. A statistic for describing pulsar and clock stabilities. Astron. Astrophys., 326:924–928.

    Google Scholar 

  • Press, W.H., Rybicki, G.B., 1989. Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J., 338:227–280.

    Article  Google Scholar 

  • Scargle, J.D., 1982. Studies in astronomical time series analysis. II: statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263:835–853.

    Article  Google Scholar 

  • Schulz, M., Stattegger, K., 1997. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Comput. Geosci., 23(9):929–945. [doi:10.1016/s-0098-3004(97)00087-3]

    Article  Google Scholar 

  • Scott, D.M., Finger, M.H., Wilson, C.A., 2003. Characterization of the timing noise of the Crab pulsar. Mon. Not. R. Astron. Soc., 344(2):412–430. [doi:10.1046/j.1365-8711.2003.06825.x]

    Article  Google Scholar 

  • Sheikh, S.I., 2005. The Use of Variable Celestial X-Ray Sources for Spacecraft Navigation. PhD Thesis, University of Maryland, USA.

    Google Scholar 

  • Shuai, P., 2009. Principle and Method of the X-Ray Pulsar Navigation System. China Aerospace Press, China (in Chinese).

    Google Scholar 

  • Stellingwerf, R.F., 1978. Period determination using phase dispersion minimization. Astrophys. J., 224:953–960.

    Article  Google Scholar 

  • Sun, H.F., Xie, K., Li, X.P., et al., 2013. A simulation technique of X-ray pulsar signals with high timing stability. Acta Phys. Sin., 62(10):109701.1–109701.11 (in Chinese). [doi:10.7498/aps.62.109701]

    Google Scholar 

  • Wang, Y.D., Zheng, W., Sun, S.M., et al., 2014. X-ray pulsarbased navigation using time-differenced measurement. Aeros. Sci. Technol., 36:27–35. [doi:10.1016/j.ast.2014.03.007]

    Article  Google Scholar 

  • Xie, Q., 2012. Study on Signal Identification and Cycle Ambiguity Resolution Technology for X-Ray Pulsar. PhD Thesis, Xidian University, China (in Chinese).

    Google Scholar 

  • Xiong, Z., Qiao, L., Liu, J.Y., et al., 2012. Geo satellite autonomous navigation using X-ray pulsar navigation and GNSS measurements. Int. J. Innov. Comput. Inform. Contr., 8(5A):2965–2977.

    Google Scholar 

  • Zhang, C.H., Wang, N., Yuan, J.P., et al., 2012. Timing noise study of four pulsars. Sci. China Phys. Mech. Astron., 55(2):333–338. [doi:10.1007/s11433-011-4620-;6]

    Article  Google Scholar 

  • Zhang, H., Xu, L.P., Shen, Y.H., et al., 2014. A new maximum-likelihood phase estimation method for X-ray pulsar signals. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6):458–469. [doi:10.1631/jzus.C1300347]

    Article  Google Scholar 

  • Zhou, Q.Y., Ji, J.F., Ren, H.F., 2013. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data. Acta Phys. Sin., 62(1):019701.1–019701.8 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-rong Shen.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2014CB340205), the National Natural Science Foundation of China (Nos. 61301173 and 61473228), and the Aerospaced TT&C Innovation Program of 704 Research Institute of China (No. 201405B)

ORCID: Li-rong SHEN, http://orcid.org/0000-0002-9131-1079

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Lr., Li, Xp., Sun, Hf. et al. A novel period estimation method for X-ray pulsars based on frequency subdivision. Frontiers Inf Technol Electronic Eng 16, 858–870 (2015). https://doi.org/10.1631/FITEE.1500052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500052

Keywords

Document code

CLC number

Navigation