Skip to main content
Log in

Human hip joint center analysis for biomechanical design of a hip joint exoskeleton

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose a new method for the customized design of hip exoskeletons based on the optimization of the humanmachine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center’s movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The human-exoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afoke, N.Y., Byers, P.D., Hutton, W.C., 1984. The incongruous hip joint: a loading study. Ann. Rheum. Dis., 43(2):295–301. http://dx.doi.org/10.1136/ard.43.2.295

    Article  Google Scholar 

  • Banala, S.K., Kim, S.H., Agrawal, S.K., et al., 2009. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neur. Syst. Rehabil. Eng., 17(1):2–8. http://dx.doi.org/10.1109/tnsre.2008.2008280

    Article  Google Scholar 

  • Camomilla, V., Cereatti, A., Vannozzi, G., et al., 2006. An optimized protocol for hip joint centre determination using the functional method. J. Biomech., 39(6):1096–1106. http://dx.doi.org/10.1016/j.jbiomech.2005.02.008

    Article  Google Scholar 

  • Cempini, M., de Rossi, S.M.M., Lenzi, T., et al., 2013. Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE Trans. Robot., 29(1):236–250. http://dx.doi.org/10.1109/TRO.2012.2226381

    Article  Google Scholar 

  • Esquenazi, A., Talaty, M., Packel, A., et al., 2012. The Re-Walk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil., 91(11):911–921. http://dx.doi.org/10.1097/PHM.0b013e318269d9a3

    Article  Google Scholar 

  • Farris, R.J., Quintero, H.A., Goldfarb, M., 2011. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(6):652–659. http://dx.doi.org/10.1109/tnsre.2011.2163083

    Article  Google Scholar 

  • Fletcher, R., Powell, M.J., 1963. A rapidly convergent descent method for minimization. Comput. J., 6(2):163–168. http://dx.doi.org/10.1093/comjnl/6.2.163

    Article  MathSciNet  Google Scholar 

  • Gamage, S.S.H.U., Lasenby, J., 2002. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech., 35(1):87–93. http://dx.doi.org/10.1016/S0021-9290(01)00160-9

    Article  Google Scholar 

  • Gao, B., Conrad, B.P., Zheng, N., 2007. Comparison of skin error reduction techniques for skeletal motion analysis. J. Biomech., 40(s2):S551. http://dx.doi.org/10.1016/S0021-9290(07)70541-9

    Article  Google Scholar 

  • Greenwald, A.S., O’Connor, J.J., 1971. The transmission of load through the human hip joint. J. Biomech., 4(6):507–528. http://dx.doi.org/10.1016/0021-9290(71)90041-8

    Article  Google Scholar 

  • Hidler, J., Nichols, D., Pelliccio, M., et al., 2009. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neur. Repair., 23(1):5–13. http://dx.doi.org/10.1177/1545968308326632

    Article  Google Scholar 

  • Jarrasse, N., Morel, G., 2012. Connecting a human limb to an exoskeleton. IEEE Trans. Robot., 28(3):697–709. http://dx.doi.org/10.1109/TRO.2011.2178151

    Article  Google Scholar 

  • Kang, M.J., 2004. Hip joint center location by fitting conchoid shape to the acetabular rim region of MR images. Proc. 26th Annual Int. Conf. of the IEEE. p.4477–4480. http://dx.doi.org/10.1109/iembs.2004.1404244

    Google Scholar 

  • Kawamoto, H., Sankai, Y., 2005. Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot., 19(7):717–734. http://dx.doi.org/10.1163/1568553054455103

    Article  Google Scholar 

  • Krupicka, R., Szabo, Z., Viteckova, S., et al., 2014. Motion capture system for finger movement measurement in parkinson disease. Radioengineering, 23(2):659–664.

    Google Scholar 

  • Leardini, A., Cappozzo, A., Catani, F., et al., 1999. Validation of a functional method for the estimation of hip joint centre location. J. Biomech., 32(1):99–103. http://dx.doi.org/10.1016/S0021-9290(98)00148-1

    Article  Google Scholar 

  • Lee, K.M., Guo, J., 2010. Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech., 43(7):1231–1236. http://dx.doi.org/10.1016/j.jbiomech.2010.02.001

    Article  Google Scholar 

  • Lenzi, T., Vitiello, N., de Rossi, S.M.M., et al., 2011. Measuring human–robot interaction on wearable robots: a distributed approach. Mechatronics, 21(6):1123–1131. http://dx.doi.org/10.1016/j.mechatronics.2011.04.003

    Article  Google Scholar 

  • Menschik, F., 1997. The hip joint as a conchoid shape. J. Biomech., 30(9):971–973. http://dx.doi.org/10.1016/S0021-9290(97)00051-1

    Article  Google Scholar 

  • Nef, T., Riener, R., Müri, R., et al., 2013. Comfort of two shoulder actuation mechanisms for arm therapy exoskeletons: a comparative study in healthy subjects. Med. Biol. Eng. Comput., 51(7):781–789. http://dx.doi.org/10.1007/s11517-013-1047-4

    Article  Google Scholar 

  • Ren, Y.P., Kang, S.H., Park, H.S., et al., 2013. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans. Neur. Syst. Rehabil. Eng., 21(3):490–499. http://dx.doi.org/10.1109/tnsre.2012.2225073

    Article  Google Scholar 

  • Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neur. Syst. Rehabil. Eng., 14(4):456–469. http://dx.doi.org/10.1109/TNSRE.2006.881565

    Article  Google Scholar 

  • Stienen, A.H.A., Hekman, E.E.G., van der Helm, F.C.T., et al., 2009. Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Robot., 25(3):628–633. http://dx.doi.org/10.1109/TRO.2009.2019147

    Article  Google Scholar 

  • Suzuki, K., Mito, G., Kawamoto, H., et al., 2007. Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv. Robot., 21(12):1441–1469.

    Google Scholar 

  • Valiente, A., 2005. Design of a Quasi-Passive Parallel Leg Exoskeleton to Augment Load Carrying for Walking. MS Thesis, Massachusetts Institute of Technology, Boston, USA.

    Google Scholar 

  • Veneman, J.F., Ekkelenkamp, R., Kruidhof, R., et al., 2006. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res., 25(3):261–281. http://dx.doi.org/10.1177/0278364906063829

    Article  Google Scholar 

  • Wang, D., Lee, K.M., Guo, J., et al., 2014. Adaptive knee joint exoskeleton based on biological geometries. IEEE/ASME Trans. Mech., 19(4):1268–1278. http://dx.doi.org/10.1109/TMECH.2013.2278207

    Article  Google Scholar 

  • Wu, G., Siegler, S., Allard, P., et al., 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech., 35(4):543–548. http://dx.doi.org/10.1016/S0021-9290(01)00222-6

    Article  Google Scholar 

  • Yan, H., Yang, C., Zhang, Y., et al., 2014. Design and validation of a compatible 3-degrees of freedom shoulder exoskeleton with an adaptive center of rotation. J. Mech. Des., 136(7):071006. http://dx.doi.org/10.1115/1.4027284

    Article  Google Scholar 

  • Zakani, S., Smith, E.J., Kunz, M., et al., 2012. Tracking translations in the human hip. ASME Int. Mechanical Engineering Congress and Exposition, p.109–115. http://dx.doi.org/10.1115/IMECE2012-87882

    Google Scholar 

  • Zoss, A.B., Kazerooni, H., Chu, A., 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mech., 11(2):128–138. http://dx.doi.org/10.1109/TMECH.2006.871087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-jun Yang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51221004)

ORCID: Can-jun YANG, http://orcid.org/0000-0002-3712-0538

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Yang, Cj. & Xu, T. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton. Frontiers Inf Technol Electronic Eng 17, 792–802 (2016). https://doi.org/10.1631/FITEE.1500286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500286

Keywords

CLC number

Navigation