Skip to main content
Log in

A multi-functional dynamic state estimator for error validation: measurement and parameter errors and sudden load changes

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose a new and efficient algorithm to detect, identify, and correct measurement errors and branch parameter errors of power systems. A dynamic state estimation algorithm is used based on the Kalman filter theory. The proposed algorithm also successfully detects and identifies sudden load changes in power systems. The method uses three normalized vectors to process errors at each sampling time: normalized measurement residual, normalized Lagrange multiplier, and normalized innovation vector. An IEEE 14-bus test system was used to verify and demonstrate the effectiveness of the proposed method. Numerical results are presented and discussed to show the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abur, A., Exposito, A.G., 2004. Power System State Estimation. Marcel & Dekker Publishers, New York.

    Book  Google Scholar 

  • Bao, W., Guo, R.P., Han, Z.X., et al., 2015. A substation oriented approach to optimal phasor measurement units placement. J. Electr. Eng. Technol, 10(1):18–29.

    Article  Google Scholar 

  • Debs, A.S., Larson, R.E., 1970. A dynamic estimator for tracking the state of the power system. IEEE Trans. Power Appar. Syst., PAS-89(7):1670–1678. http://dx.doi.org/10.1109/TPAS.1970.292822

    Article  Google Scholar 

  • Falcao, D.M., Cooke, P.A., Brameller, A., 1982. Power system tracking state estimation and bad data processing. IEEE Trans. Power Syst., PAS-101(2):325–333. http://dx.doi.org/10.1109/TPAS.1982.317110

    Article  Google Scholar 

  • Filho, M.B.C., Souza, J.C.S., 2009. Forecasting aided state estimation: part I: panorama. IEEE Trans. Power Syst., 24(4):1667–1677. http://dx.doi.org/10.1109/TPWRS.2009.2030295

    Article  Google Scholar 

  • Filho, M.B.C., Silva, A.M.L., Cantera, J.M.C., et al., 1989. Information debugging for real-time power systems monitoring. IET Gener. Transm. Distr., 136(3):145–152. http://dx.doi.org/10.1049/ip-c.1989.0021

    Article  Google Scholar 

  • Filho, M.B.C., Souza, J.C.S., Freund, R.S., 2009. Forecasting aided state estimation: part II: implementation. IEEE Trans. Power Syst., 24(4):1678–1685. http://dx.doi.org/10.1109/TPWRS.2009.2030297

    Article  Google Scholar 

  • Glazunova, A.M., 2010. Forecasting power system state variables on the basis dynamic state estimation and artificial neural networks. IEEE Region 8 Int. Conf. on Computational Technologies in Electrical and Electronics Engineering, p.470–475. http://dx.doi.org/10.1109/SIBIRCON.2010.5555125

    Google Scholar 

  • Gu, C., Jirutitijaroen, P., 2015. Dynamic state estimation under communication failure using Kriging based bus load forecasting. IEEE Trans. Power Syst., 30(6):2831–2840. http://dx.doi.org/10.1109/TPWRS.2014.2382102

    Article  Google Scholar 

  • Gui, Y., Kavasseri, R., 2015. A particle filter for dynamic state estimation in multi-machine systems with detailed models. IEEE Trans. Power Syst., 30(6):3377–3385. http://dx.doi.org/10.1109/TPWRS.2014.2387792

    Article  Google Scholar 

  • Hu, L., Wang, Z., Liu, X., 2015. Dynamic state estimation of power systems with quantization effects: a recursive filter approach. IEEE Trans. Neur. Netw. Learn. Syst., 27(8):1604–1614. http://dx.doi.org/10.1109/TNNLS.2014.2381853

    Article  MathSciNet  Google Scholar 

  • Huang, S.J., Shih, K.R., 2002. Dynamic state estimation scheme including nonlinear measurement function considerations. IET Gener. Transm. Distr., 149(6):673–678. http://dx.doi.org/10.1049/ip-gtd:20020644

    Article  Google Scholar 

  • Karimipour, H., Dinavahi, V., 2015. Extended Kalman filter based parallel dynamic state estimation. IEEE Trans. Smart Grid, 6(3):1539–1549. http://dx.doi.org/10.1109/TSG.2014.2387169

    Article  Google Scholar 

  • Lin, J.M., Huang, S.J., Shih, K.R., 2003. Application of sliding surface enhances fuzzy control for dynamic state estimation of a power system. IEEE Trans. Power Syst., 18(2):570–577. http://dx.doi.org/10.1109/TPWRS.2003.810894

    Article  Google Scholar 

  • Prasad, G.D., Thakur, S.S., 1998. A new approach to dynamic state estimation of power systems. Electr. Power Syst. Res., 45(3):173–180. http://dx.doi.org/10.1016/S0378-7796(97)01219-4

    Article  Google Scholar 

  • Qing, X.Y., Karimi, H.R., Niu, N.G., et al., 2015. Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems. Int. J. Electr. Power Energy Syst., 65:26–33. http://dx.doi.org/10.1016/j.ijepes.2014.09.024

    Article  Google Scholar 

  • Qiu, J.B., Feng, G., Gao, H.J., 2013a. Static-output-feedback H control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst., 21(2):245–261. http://dx.doi.org/10.1109/TFUZZ.2012.2210555

    Article  Google Scholar 

  • Qiu, J.B., Tian, H., Lu, Q.G., et al., 2013b. Nonsynchronized robust filtering design for continuous-time T-S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern., 43(6):1755–1766. http://dx.doi.org/10.1109/TSMCB.2012.2229389

    Article  Google Scholar 

  • Qiu, J.B., Wei, Y.L., Karimi, H.R., 2015. New approach to delay dependent H control for continuous time Markovian jump systems with time varying delay and deficient transition descriptions. J. Franklin Inst., 352(1):189–215. http://dx.doi.org/10.1016/j.jfranklin.2014.10.022

    Article  MathSciNet  Google Scholar 

  • Risso, M., Rubiales, A.J., Lotito, A.P., 2015. Hybrid method for power system state estimation. IET Gener. Transm. Distr., 9(7):636–643. http://dx.doi.org/10.1049/iet-gtd.2014.0836

    Article  Google Scholar 

  • Sharma, A., Srivastava, S.C., Chakrabarti, S., 2015. A multiagent-based power system hybrid dynamic state estimator. IEEE Intell. Syst., 30(3):52–59. http://dx.doi.org/10.1109/MIS.2015.52

    Article  Google Scholar 

  • Shih, K.R., Huang, S.J., 2002. Application of a robust algorithm for dynamic state estimation of a power system. IEEE Trans. Power Syst., 17(1):141–147. http://dx.doi.org/10.1109/59.982205

    Article  Google Scholar 

  • Silva, A.M.L., Filho, M.B.C., 1983. State estimation in electric power systems. IET Gener. Transm. Distr., 130:237–244.

    Article  Google Scholar 

  • Silva, A.M.L., Filho, M.B.C., Cantera, J.M.C., 1987. An efficient dynamic state estimation algorithm including bad data processing. IEEE Trans. Power Syst., 2(4):1050–1058. http://dx.doi.org/10.1109/TPWRS.1987.4335300

    Article  Google Scholar 

  • Tebianian, H., Jeyasurya, B., 2015. Dynamic state estimation in power systems: modeling, and challenges. Electr. Power Syst. Res., 121:109–114. http://dx.doi.org/10.1016/j.epsr.2014.12.005

    Article  Google Scholar 

  • Valverde, G., Terzija, V., 2011. Unscented Kalman filter for power system dynamic state estimation. IET Gener. Transm. Distr., 5(1):29–37. http://dx.doi.org/10.1049/iet-gtd.2010.0210

    Article  Google Scholar 

  • Wang, S., Gao, W., Meliopoulos, A.P.S., 2012. An alternative method for power system dynamic state estimation based on unscented transform. IEEE Trans. Power Syst., 27(2):942–950. http://dx.doi.org/10.1109/TPWRS.2011.2175255

    Article  Google Scholar 

  • Zhu, J., Abur, A., 2010. Improvement in network parameter error identification via synchronized phasors. IEEE Trans. Power Syst., 25(1):44–50. http://dx.doi.org/10.1109/TPWRS.2009.2030274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ahmadi Jirdehi.

Additional information

ORCID: Mehdi AHMADI JIRDEHI, http://orcid.org/0000-0002-7836-9401

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Jirdehi, M., Hemmati, R., Abbasi, V. et al. A multi-functional dynamic state estimator for error validation: measurement and parameter errors and sudden load changes. Frontiers Inf Technol Electronic Eng 17, 1218–1227 (2016). https://doi.org/10.1631/FITEE.1500301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500301

Key words

CLC number

Navigation