Skip to main content
Log in

Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Budillon, A., Pascazio, V., Schirinzi, G., 2008. Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geosci. Remote Sens. Lett., 5(3): 349–353. http://dx.doi.org/10.1109/lgrs.2008.915937

    Article  Google Scholar 

  • Chapin, E., Chen, C.W., 2009. Airborne along-track interferometry for GMTI. IEEE Aerosp. Electron. Syst. Mag., 24(5): 13–18. http://dx.doi.org/10.1109/maes.2009.5109948

    Article  Google Scholar 

  • Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets. Proc. IEEE Radar Conf., 99–104. http://dx.doi.org/10.1109/nrc.2004.1316403

    Google Scholar 

  • Cumming, I.G., Wong, F.H., 2004. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, London.

    Google Scholar 

  • Dall, J., Grinder-Pedersen, J., Madsen, S.N., 1997. Calibration of a high resolution airborne 3D SAR. IEEE Int. Geoscience and Remote Sensing Symp., p.1018–1021. http://dx.doi.org/10.1109/igarss.1997.615329

    Google Scholar 

  • Fischer, J., Baumgartner, S., Reigber, A., et al., 2008. Geometric, radiometric, polarimetric and along-track interferometric calibration of the new F-SAR system of DLR in X-Band. 7th European Conf. on Synthetic Aperture Radar, p.109–112.

    Google Scholar 

  • Fornaro, G., 1999. Trajectory deviations in airborne SAR: analysis and compensatin. IEEE Trans. Aerosp. Electron. Syst., 35(3): 997–1009. http://dx.doi.org/10.1109/7.784069

    Article  Google Scholar 

  • Fornaro, G., Franceschetti, G., Perna, S., 2005. Motion compemsatiom errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electr. Syst., 41(4): 1338–1352. http://dx.doi.org/10.1109/taes.2005.1561888

    Article  Google Scholar 

  • Fornaro, G., Franceschetti, G., Perna, S., 2006. On centerbeam approximation in SAR motion compensation. IEEE Geosci. Remote Sens. Lett., 3(2): 276–280. http://dx.doi.org/10.1109/lgrs.2005.863391

    Article  Google Scholar 

  • Gierull, C.H., 2003. Digital Channel Balancing of Along-Track Interferometric SAR Data. Technical Memorandum No. DRDC-OTTAWA-TM-2003-024, Defence R&D Canada-Ottawa.

    Google Scholar 

  • Glerull, C.H., 2002. Moving Target Detection with Along-Track SAR Interferometry: a Theoretical Analysis. Technical Memorandum No. DRDC-OTTAWA-TR-2002-084, Defence R&D Canada-Ottawa.

    Google Scholar 

  • Goldstein, R.M., Zebker, H.A., 1987. Interferometric radar measurement of ocean surface currents. Nature, 328(6132): 707–709. http://dx.doi.org/10.1038/328707a0

    Article  Google Scholar 

  • Gonzalez, J.H., Bachmann, M., Krieger, G., et al., 2010. Development of the TanDEM-X calibration concept: analysis of systematic errors. IEEE Trans. Geosci. Remote Sens., 48(2): 716–726. http://dx.doi.org/10.1109/tgrs.2009.2034980

    Article  Google Scholar 

  • Hirsch, O., 2001. Calibration of an airborne along-track interferometric SAR system for accurate measurement of velocities. IEEE Int. Geoscience and Remote Sensing Symp., p.558–560. http://dx.doi.org/10.1109/igarss.2001.976221

    Google Scholar 

  • Imel, D.A., 2002. AIRSAR along-track interferometry data. AIRSAR Earth Science and Applications Workshop, p.1–58.

    Google Scholar 

  • Li, F.F., Qiu, X.L., Meng, D.D., et al., 2014. Effects of motion compensation errors on performance of airborne dualantenna InSAR. J. Electr. Inform. Technol., 35(3): 559–567 (in Chinese). http://dx.doi.org/10.3724/sp.j.1146.2012.00850

    Article  Google Scholar 

  • Madsen, S.N., Skou, N., Woelders, K., et al., 1996. EMISAR single pass topographic SAR interferometer modes. IEEE Geoscience and Remote Sensing Symp., p.674–676. http://dx.doi.org/10.1109/igarss.1996.516439

    Google Scholar 

  • Marom, M., Goldstein, R.M., Thornton, E.B., et al., 1990. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature, 345(6278): 793–795. http://dx.doi.org/10.1038/345793a0

    Article  Google Scholar 

  • Moccia, A., Rufino, G., 2001. Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans. Aerosp. Electron. Syst., 37(1): 199–213. http://dx.doi.org/10.1109/7.913679

    Article  Google Scholar 

  • Moreira, A., Huang, Y.H., 1994. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens., 32(5): 1029–1040. http://dx.doi.org/10.1109/36.312891

    Article  Google Scholar 

  • Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst., AES-7(3):499–505. http://dx.doi.org/10.1109/taes.1971.310292

    Article  Google Scholar 

  • Reigber, A., Alivizatos, E., Potsis, A., et al., 2006. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc.-Radar Sonar Navig., 153(3): 301–310. http://dx.doi.org/10.1049/ip-rsn:20045087

    Article  Google Scholar 

  • Rosen, P.A., Hensley, S., Joughin, I.R., et al., 2000. Synthetic aperture radar interferometry. Proc. IEEE, 88(3): 333–382. http://dx.doi.org/10.1109/5.838084

    Article  Google Scholar 

  • Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5): 950–959. http://dx.doi.org/10.1109/36.175330

    Article  Google Scholar 

  • Zhang, H., Hong, J., 2013. Sensitivity analysis of along-track interferometric synthetic aperture radar (ATI-SAR) in the presence of squint. IET Int. Radar Conf., p.1–5. http://dx.doi.org/10.1049/cp.2013.0181

    Google Scholar 

  • Zhang, Y.H., 2006. Along Track Interferometry Synthetic Aperture Radar Techniques for Ground Moving Target Detection. Technical Report No. AFRL-SN-RS-TR-2005-410, Stiefvater Consultants.

    Google Scholar 

  • Zink, M., Krieger, G., Fiedler, H., et al., 2007. The TanDEMX mission: overview and status. IEEE Int. Geoscience and Remote Sensing Symp., p.3944–3947. http://dx.doi.org/10.1109/igarss.2007.4423711

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61331017 and 61401428)

ORCID: Hui ZHANG, http://orcid.org/0000-0002-4304-0411

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hong, J., Qiu, Xl. et al. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR. Frontiers Inf Technol Electronic Eng 17, 1095–1106 (2016). https://doi.org/10.1631/FITEE.1500311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500311

Keywords

CLC number

Navigation