Skip to main content
Log in

Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In the IEEE 802.16e/m standard, three power saving classes (PSCs) are defined to save the energy of a mobile sub-scriber station (MSS). However, how to set the parameters of PSCs to maximize the power saving and guarantee the quality of service is not specified in the standard. Thus, many algorithms were proposed to set the PSCs in IEEE 802.16 networks. However, most of the proposed algorithms consider only the power saving for a single MSS. In the algorithms designed for multiple MSSs, the sleep state, which is set for activation of state transition overhead power, is not considered. The PSC setting for real-time connections in multiple MSSs with consideration of the state transition overhead is studied. The problem is non-deterministic polynomial time hard (NP-hard), and a suboptimal algorithm for the problem is proposed. Simulation results demonstrate that the energy saving of the proposed algorithm is higher than that of state-of-the-art algorithms and approaches the optimum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek, S., Son, J.J., Choi, B.D., 2009. Performance analysis of sleep mode operation for IEEE 802.16m advanced WMAN. IEEE Int. Conf. on Communications Workshops, p.1–4. http://dx.doi.org/10.1109/ICCW.2009.5208113

    Google Scholar 

  • Broadband Wireless Access Working Group, 2006. IEEE Standard for Local and Metropolitan Area Networks: Part 16, 802.16e-2005, WG802.16. http://dx.doi.org/10.1109/IEEESTD.2006.99107

    Google Scholar 

  • Broadband Wireless Access Working Group, 2011. IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface. WG802.16. http://dx.doi.org/10.1109/IEEESTD.2011.5765736

    Google Scholar 

  • Chen, C.Y., Hsu, C.H., Feng, K.T., 2010. Performance analysis and comparison of sleep mode operation for IEEE 802.16m advanced broadband wireless networks. IEEE Int. Symp. on Personal Indoor and Mobile Radio Com-munications, p.1425–1430. http://dx.doi.org/10.1109/PIMRC.2010.5671992

  • Chen, T.C., Chen, J.C., 2009. Extended maximizing unavaila-bility interval (eMUI): maximizing energy saving in IEEE 802.16e for mixing type I and type II PSCs. IEEE Com-mun. Lett., 13(2): 151–153. http://dx.doi.org/10.1109/LCOMM.2009.081725

    Article  Google Scholar 

  • Chen, T.C., Chen, J.C., Chen, Y.Y., 2009. Maximizing una-vailability interval for energy saving in IEEE 802.16e wireless MANs. IEEE Trans. Mob. Comput., 8(4): 475–487. http://dx.doi.org/10.1109/LCOMM.2009.081725

    Article  Google Scholar 

  • Cookson, A.H., 1985. Particle Trap for Compressed Gas In-sulated Transmission Systems. US Patent 4 554 399.

    Google Scholar 

  • Feng, H.W., Li, H.Y., 2013. Design of predictive and dynamic energy-efficient mechanisms for IEEE 802.16e. Wirel. Pers. Commun., 68(4): 1807–1835. http://dx.doi.org/10.1007/s11277-012-0551-4

    Article  Google Scholar 

  • Hwang, E., Kim, K.J., Son, J.J., et al., 2010. The power-saving mechanism with periodic traffic indications in the IEEE 802.16e/m. IEEE Trans. Veh. Techol., 59(1): 319–334. http://dx.doi.org/10.1109/TVT.2009.2032193

    Article  Google Scholar 

  • Jin, S., Choi, M., Choi, S., 2010. Performance analysis of IEEE 802.16m sleep mode for heterogeneous traffic. IEEE Commun. Lett., 14(5): 405–407. http://dx.doi.org/10.1109/LCOMM.2010.05.091730

    Article  Google Scholar 

  • Jin, S., Chen, X., Qiao, D., et al., 2011. Adaptive sleep mode management in IEEE 802.16m wireless metropolitan area networks. Comput. Netw., 55(16): 3774–3783. http://dx.doi.org/10.1016/j.comnet.2011.03.002

    Article  Google Scholar 

  • Kalle, R., Raj, M., Das, D., 2009. A novel architecture for IEEE 802.16m subscriber station for joint power saving class management. Int. Conf. on Communication Systems and Networks, p. 1–10. http://dx.doi.org/10.1109/COMSNETS.2009.4808868

    Google Scholar 

  • Kao, C.C., Yang, S.R., Chen, H.C., 2012. A sleep-mode interleaving algorithm for layered-video multicast ser-vices in IEEE 802.16e networks. Comput. Netw., 56(16): 3639–3654. http://dx.doi.org/10.1016/j.comnet.2012.07.013

    Article  Google Scholar 

  • Kim, R.Y., Mohanty, S., 2010. Advanced power management techniques in next-generation wireless networks. IEEE Commun. Mag., 40(3): 94–102. http://dx.doi.org/10.1109/MCOM.2010.5458369

    Article  Google Scholar 

  • Lin, Y.W., Wang, J.S., 2013. An adaptive QoS power saving scheme for mobile WiMAX. Wirel. Pers. Commun., 69(4): 1435–1462. http://dx.doi.org/10.1007/s11277-012-0644-0

    Article  Google Scholar 

  • Liu, W.J., Feng, K.T., Tseng, P.H., 2014. Optimality of frame aggregation-based power-saving scheduling algorithm for broadband wireless networks. IEEE Trans. Wirel. Com-mun., 13(2): 577–591. http://dx.doi.org/10.1109/TW.2013.123013.121540

    Article  Google Scholar 

  • Park, Y., Hwang, G.U., 2009. An efficient power saving mechanism for delay-guaranteed services in IEEE 802.16e. IEICE Trans. Commun., E92-B(1):277–278.

    Article  Google Scholar 

  • Park, Y., Leem, H., Sung, D.K., 2010. Power saving mecha-nism in IEEE 802.16m. IEEE Vehicular Technology Conf., p.1–5. http://dx.doi.org/10.1109/VETECS.2010.5493680

  • Seo, J.B., Lee, S.Q., Park, N.H., et al., 2004. Performance analysis of sleep mode operation in IEEE 802.16e. IEEE Vehicular Technology Conf., p.1169–1173. http://dx.doi.org/10.1109/VETECF.2004.1400205

  • Tseng, Y.C., Chen, J.J., Yang, Y.C., 2011. Managing power saving classes in IEEE 802.16 wireless MANs: a fold-and-demultiplex method. IEEE Trans. Mob. Comput., 10(9): 1237–1247. http://dx.doi.org/10.1109/TMC.2010.215

    Article  Google Scholar 

  • Wong, G.K.W., Zhang, Q., Tsang, D.H.K., 2010. Switching cost minimization in the IEEE 802.16e mobile WiMAX sleep mode operation. Wirel. Commun. Mob. Comput., 10(12): 1576–1588. http://dx.doi.org/10.1002/wcm.875

    Article  Google Scholar 

  • Wu, C.Y., Ho, H.J., Lee, S.L., 2012. Minimizing energy con-sumption with QoS constraints over IEEE 802.16e net-works. Comput. Commun., 35(14): 1672–1683. http://dx.doi.org/10.1016/j.comcom.2012.06.012

    Article  Google Scholar 

  • Xiao, Y., 2005. Energy saving management in the IEEE 802.16e wireless MAN. IEEE Commun. Lett., 9(7): 595–597.

    Article  Google Scholar 

  • Zhu, F., Wu, Y., Niu, Z., 2009. Delay analysis for sleep-based power saving mechanisms with downlink and uplink traffic. IEEE Commun. Lett., 13(8): 615–617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

ORCID: Bo LI, http://orcid.org/0000-0002-5790-4778

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Park, Sk. Maximizing power saving with state transition overhead for multiple mobile subscriber stations in WiMAX. Frontiers Inf Technol Electronic Eng 17, 1085–1094 (2016). https://doi.org/10.1631/FITEE.1500314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500314

Keywords

CLC number

Navigation