Skip to main content
Log in

Orbit determination using incremental phase and TDOA of X-ray pulsar

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival (TDOA). Then, a weighted least squares (WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backer, D.C., Hellings, R.W., 1986. Pulsar timing and general relativity. Ann. Rev. Astron. Astrophys., 24:537–575. http://dx.doi.org/10.1146/annurev.aa.24.090186.002541

    Article  Google Scholar 

  • Chester, T.J., Butman, S.A., 1981. Navigation Using X-ray Pulsars. The Telecommunications and Data Acquisition Progress Report No. TDA PR42-63, NASA, p.22–25.

    Google Scholar 

  • Deutschmann, J.K., Bar-Itzhack, I.Y., 2001. Evaluation of attitude and orbit estimation using actual earth magnetic field data. J. Guid. Contr. Dyn., 24(3): 616–623. http://dx.doi.org/10.2514/2.4753

    Article  Google Scholar 

  • Emadzadeh, A.A., Speyer, J.L., 2011. Relative navigation between two spacecraft using X-ray pulsars. IEEE Trans. Contr. Syst. Technol., 19(5): 1021–1035. http://dx.doi.org/10.1109/TCST.2010.2068049

    Article  Google Scholar 

  • Farahanifar, M., Assadian, N., 2015. Integrated magnetometer— horizon sensor low-Earth orbit determination using UKF. Acta Astronaut., 106:13–23. http://dx.doi.org/10.1016/j.actaastro.2014.10.007

    Article  Google Scholar 

  • Hinedi, S., 1993. NASA’s next generation all-digital deep space network breadboard receiver. IEEE Trans. Commun., 41(1): 246–257. http://dx.doi.org/10.1109/26.212383

    Article  Google Scholar 

  • Huang, L.W., Liang, B., 2010. Autonomous initial orbit determination of high-Earth-orbit satellites using X-ray pulsars. J. Syst. Simul., 22(S1):258–261 (in Chinese).

    Google Scholar 

  • Liu, J., Fang, J.C., Yang, Z.H., et al., 2015. X-ray pulsar/Doppler difference integrated navigation for deep space exploration with unstable solar spectrum. Aerosp. Sci. Technol., 41:144–150. http://dx.doi.org/10.1016/j.ast.2014.11.019

    Article  Google Scholar 

  • Ma, J., Xu, J., Cao, Z.B., 2005. A method of autonomous orbit determination for satellite using star sensor. Sci. China Ser. G, 48(3): 268–281. http://dx.doi.org/10.1360/142004-23

    Article  Google Scholar 

  • Mao, Y., Chen, J.P., Song, X.Y., 2010. Single X-ray pulsar dynamic orbit determination. J. Geomat. Sci. Technol., 27(4): 251–254 (in Chinese).

    Google Scholar 

  • Psiaki, M.L., 1995. Autonomous orbit and magnetic field determination using magnetometer and star sensor data. J. Guid. Contr. Dyn., 18(3): 584–592. http://dx.doi.org/10.2514/3.21427

    Article  Google Scholar 

  • Qian, Y., Li, C., Jing, W., et al., 2013. Sun-Earth-Moon autonomous orbit determination for quasi-periodic orbit about the translunar libration point and its observability analysis. Aerosp. Sci. Technol., 28(1): 289–296. http://dx.doi.org/10.1016/j.ast.2012.11.009

    Article  Google Scholar 

  • Ray, P.S., Wood, K.S., Wolff, M.T., et al., 2002. Absolute timing of the crab pulsar: X-ray, radio, and optical observations. Bull. Am. Astron. Soc., 34:1298.

    Google Scholar 

  • Shang, L., Liu, G., Zhang, R., et al., 2013. An information fusion algorithm for integrated autonomous orbit determination of navigation satellites. Acta Astronaut., 85: 33–40. http://dx.doi.org/10.1016/j.actaastro.2012.12.007

    Article  Google Scholar 

  • Sheikh, S.I., 2005. The Use of Variable Celestial X-ray Sources for Spacecraft Navigation. PhD Thesis, University of Maryland, College Park, USA.

    Google Scholar 

  • Sheikh, S.I., Hellings, R.W., Matzner, R.A., 2007. High-order pulsar timing for navigation. 63rd Annual Meeting of the Institute of Navigation, p.432–443.

    Google Scholar 

  • Sheikh, S.I., Hanson, J.E., Graven, P.H., et al., 2011. Spacecraft navigation and timing using X-ray pulsars. Navigation, 58(2): 165–186. http://dx.doi.org/10.1002/j.2161-4296.2011.tb01799.x

    Article  Google Scholar 

  • Taylor, J.H., 1992. Pulsar timing and relativistic gravity. Phil. Trans. Phys. Sci. Eng., 341(1660): 117–134.

    Article  Google Scholar 

  • Visser, P.N.A.M., van den Ijssel, J., 2000. GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE. J. Geod., 74(7): 590–602. http://dx.doi.org/10.1007/s001900000119

    Article  Google Scholar 

  • Wang, Y., Zheng, W., Sun, S., et al., 2013. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite. Adv. Space Res., 51(12): 2394–2404. http://dx.doi.org/10.1016/j.asr.2013.02.007

    Article  Google Scholar 

  • Woodfork, D.W., 2005. The Use of X-ray Pulsars for Aiding GPS Satellite Orbit Determination. MS Thesis, Air University, Maxwell Air Force Base, USA.

    Google Scholar 

  • Xiong, K., Wei, C., Liu, L., 2013. Autonomous navigation for a group of satellites with star sensors and inter-satellite links. Acta Astronaut., 86:10–23. http://dx.doi.org/10.1016/j.actaastro.2012.12.001

    Article  Google Scholar 

  • Zhang, H., Xu, L., 2011. An improved phase measurement method of integrated pulse profile for pulsar. Sci. China Technol. Sci., 54(9): 2263–2270. http://dx.doi.org/10.1007/s11431-011-4524-8

    Article  Google Scholar 

  • Zhang, H., Xu, L., Shen, Y., et al., 2014. A new maximumlikelihood phase estimation method for X-ray pulsar signals. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6): 458–469. http://dx.doi.org/10.1631/jzus.C1300347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-ping Xu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JM6035), the Fundamental Research Funds for the Central Universities, China (No. JB161303), and the Areospace T.T.&C. Innovation Program (No. 201515A)

ORCID: Rong JIAO, http://orcid.org/0000-0002-3409-2826

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, R., Xu, Lp., Zhang, H. et al. Orbit determination using incremental phase and TDOA of X-ray pulsar. Frontiers Inf Technol Electronic Eng 17, 543–552 (2016). https://doi.org/10.1631/FITEE.1500365

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500365

Keywords

CLC number

Navigation