Skip to main content
Log in

Laplacian sparse dictionary learning for image classification based on sparse representation

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Sparse representation is a mathematical model for data representation that has proved to be a powerful tool for solving problems in various fields such as pattern recognition, machine learning, and computer vision. As one of the building blocks of the sparse representation method, dictionary learning plays an important role in the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although using training samples directly as dictionary bases can achieve good performance, the main drawback of this method is that it may result in a very large and inefficient dictionary due to noisy training instances. To obtain a smaller and more representative dictionary, in this paper, we propose an approach called Laplacian sparse dictionary (LSD) learning. Our method is based on manifold learning and double sparsity. We incorporate the Laplacian weighted graph in the sparse representation model and impose the l1-norm sparsity on the dictionary. An LSD is a sparse overcomplete dictionary that can preserve the intrinsic structure of the data and learn a smaller dictionary for each class. The learned LSD can be easily integrated into a classification framework based on sparse representation. We compare the proposed method with other methods using three benchmark-controlled face image databases, Extended Yale B, ORL, and AR, and one uncontrolled person image dataset, i-LIDS-MA. Results show the advantages of the proposed LSD algorithm over state-of-the-art sparse representation based classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11): 4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  Google Scholar 

  • Bąk, S., Corvee, E., Bremond, F., et al., 2012. Boosted human re-identification using Riemannian manifolds. Image Vis. Comput., 30(6): 443–452. https://doi.org/10.1016/j.imavis.2011.08.008

    Article  Google Scholar 

  • Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J., 1997. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Intell., 19(7): 711–720. https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  • Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, p.585–591.

    Google Scholar 

  • Chapelle, O., Schölkopf, B., Zien, A., 2006. Semi-supervised Learning. MIT Press, Cambridge, MA.

    Book  Google Scholar 

  • Elhamifar, E., Vidal, R., 2013. Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Patt. Anal. Mach. Intell., 35(11): 2765–2781. https://doi.org/10.1109/TPAMI.2013.57

    Article  Google Scholar 

  • Gangeh, M.J., Ghodsi, A., Kamel, M.S., 2013. Kernelized supervised dictionary learning. IEEE Trans. Signal Process., 61(19): 4753–4767. https://doi.org/10.1109/TSP.2013.2274276

    Article  MathSciNet  Google Scholar 

  • Gao, S., Tsang, I.W.H., Ma, Y., 2014. Learning categoryspecific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans. Image Process., 23(2): 623–634. https://doi.org/10.1109/TIP.2013.2290593

    Article  MathSciNet  Google Scholar 

  • Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell., 23(6): 643–660. https://doi.org/10.1109/34.927464

    Article  Google Scholar 

  • He, X., Niyogi, P., 2003. Locality preserving projections. 17th Annual Conf. on Neural Information Processing Systems, p.186–197.

    Google Scholar 

  • He, X., Yan, S., Hu, Y., et al., 2005. Face recognition using Laplacian faces. IEEE Trans. Patt. Anal. Mach. Intell., 27(3): 328–340. https://doi.org/10.1109/TPAMI.2005.55

    Article  Google Scholar 

  • Huang, M., Yang, W., Jiang, J., et al., 2014. Brain extraction based on locally linear representation-based classification. NeuroImage, 92: 322–339. https://doi.org/10.1016/j.neuroimage.2014.01.059

    Article  Google Scholar 

  • Lee, H., Battle, A., Raina, R., et al., 2006. Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, p.801–808.

    Google Scholar 

  • Lee, K.C., Ho, J., Kriegman, D.J., 2005. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Patt. Anal. Mach. Intell., 27(5): 684–698. https://doi.org/10.1109/TPAMI.2005.92

    Article  Google Scholar 

  • Lu, X., Li, X., 2014. Group sparse reconstruction for image segmentation. Neurocomputing, 136: 41–48. https://doi.org/10.1016/j.neucom.2014.01.034

    Article  Google Scholar 

  • Lu, X., Wu, H., Yuan, Y., et al., 2013. Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens., 51(5): 2815–2826. https://doi.org/10.1109/TGRS.2012.2213825

    Article  Google Scholar 

  • Lu, Y., Lai, Z., Fan, Z., et al., 2015. Manifold discriminant regression learning for image classification. Neurocomputing, 166: 475–486. https://doi.org/10.1016/j.neucom.2015.03.031

    Article  Google Scholar 

  • Martinez, A.M., Benavente, R., 1998. The AR Face Database. CVC Technical Report, No. 24. Centre de Visió per Computador, Universitat Autònoma de Barcelona, Edifici O, Bellaterra, Barcelona.

    Google Scholar 

  • Peleg, T., Elad, M., 2014. A statistical prediction model based on sparse representations for single image superresolution. IEEE Trans. Image Process., 23(6): 2569–2582. https://doi.org/10.1109/TIP.2014.2305844

    Article  MathSciNet  Google Scholar 

  • Qiao, L., Chen, S., Tan, X., 2010. Sparsity preserving projections with applications to face recognition. Patt. Recogn., 43(1): 331–341. https://doi.org/10.1016/j.patcog.2009.05.005

    Article  Google Scholar 

  • Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  • Rubinstein, R., Bruckstein, A.M., Elad, M., 2010a. Dictionaries for sparse representation modeling. Proc. IEEE, 98(6): 1045–1057. https://doi.org/10.1109/JPROC.2010.2040551

    Article  Google Scholar 

  • Rubinstein, R., Zibulevsky, M., Elad, M., 2010b. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process., 58(3): 1553–1564. https://doi.org/10.1109/TSP.2009.2036477

    Article  MathSciNet  Google Scholar 

  • Shao, L., Yan, R., Li, X., et al., 2014. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern., 44(7): 1001–1013. https://doi.org/10.1109/TCYB.2013.2278548

    Article  Google Scholar 

  • Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500): 2319–2323. https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  • Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.), 58(2): 267–288.

    MathSciNet  MATH  Google Scholar 

  • Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cogn. Neurosci., 3(1): 71–86.

    Article  Google Scholar 

  • Wang, W., Wang, R., Huang, Z., et al., 2015. Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2048–2057. https://doi.org/10.1109/TCSVT.2014.2367357

    Google Scholar 

  • Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2): 210–227. https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  • Yang, A.Y., Zhou, Z., Balasubramanian, A.G., et al., 2013. Fast-l1 minimization algorithms for robust face recognition. IEEE Trans. Image Process., 22(8): 3234–3246. https://doi.org/10.1109/TIP.2013.2262292

    Article  Google Scholar 

  • Yang, J., Zhang, L., Xu, Y., et al., 2012. Beyond sparsity: the role of l1-optimizer in pattern classification. Patt. Recogn., 45(3): 1104–1118. https://doi.org/10.1016/j.patcog.2011.08.022

    Article  Google Scholar 

  • Yang, J.F., Zhang, Y., 2011. Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM J. Sci. Comput., 33(1): 250–278. https://doi.org/10.1137/090777761

    Article  MathSciNet  Google Scholar 

  • Yang, M., Zhang, L., Yang, J., et al., 2010. Metaface learning for sparse representation-based face recognition. 17th IEEE Int. Conf. on Image Processing, p.1601–1604. https://doi.org/10.1109/ICIP.2010.5652363

    Google Scholar 

  • Yang, M., van Gool, L., Zhang, L., 2013. Sparse variation dictionary learning for face recognition with a single training sample per person. IEEE Int. Conf. on Computer Vision, p.689–696. https://doi.org/10.1109/ICCV.2013.91

    Google Scholar 

  • Yang, M., Dai, D., Shen, L., et al., 2014. Latent dictionary learning for sparse representation-based classification. IEEE Conf. on Computer Vision and Pattern Recognition, p.4138–4145. https://doi.org/10.1109/CVPR.2014.527

    Google Scholar 

  • Zhang, Z., Xu, Y., Yang, J., et al., 2015. A survey of sparse representation: algorithms and applications. IEEE Access, 3: 490–530. https://doi.org/10.1109/ACCESS.2015.2430359

    Article  Google Scholar 

  • Zheng, M., Bu, J., Chen, C., et al., 2011. Graph regularized sparse coding for image representation. IEEE Trans. Image Process., 20(5): 1327–1336. https://doi.org/10.1109/TIP.2010.2090535

    Article  MathSciNet  Google Scholar 

  • Zhu, P., Zuo, W., Zhang, L., et al., 2014. Image set-based collaborative representation for face recognition. IEEE Trans. Inform. Forens. Secur., 9(7): 1120–1132. https://doi.org/10.1109/TIFS.2014.2324277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-yuan Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61272304 and 61363029) and the Guangxi Key Laboratory of Trusted Software (No. kx201313)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Sheng, J. & Zhang, Sy. Laplacian sparse dictionary learning for image classification based on sparse representation. Frontiers Inf Technol Electronic Eng 18, 1795–1805 (2017). https://doi.org/10.1631/FITEE.1600039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1600039

Key words

CLC number

Navigation