Skip to main content
Log in

Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable coupling, and includes inertial uncertainties and external disturbances that require strong, robust, and high-accuracy controllers. In this paper, we propose a linear-quadratic regulator (LQR) design method based on stochastic robustness analysis for the longitudinal dynamics of AHVs. First, input/output feedback linearization is used to design LQRs. Second, subject to various system parameter uncertainties, system robustness is characterized by the probability of stability and desired performance. Then, the mapping relationship between system robustness and LQR parameters is established. Particularly, to maximize system robustness, a novel hybrid particle swarm optimization algorithm is proposed to search for the optimal LQR parameters. During the search iteration, a Chernoff bound algorithm is applied to determine the finite sample size of Monte Carlo evaluation with the given probability levels. Finally, simulation results show that the optimization algorithm can effectively find the optimal solution to the LQR parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arun Kishore, W.C., Sen, S., Ray, G., et al., 2008. Dynamic control allocation for tracking time-varying control de-mand. J. Guid. Contr. Dynam., 31(4): 1150–1157. https://doi.org/10.2514/1.34085

    Article  Google Scholar 

  • Bolender, M.A., Doman, D.B., 2005. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.2005–6255. https://doi.org/10.2514/6.2005-6255

    Book  Google Scholar 

  • Bolender, M., Oppenheimer, M., Doman, D., 2007. Effects of uncertainty and viscous aerodynamics on dynamics of a flexible air-breathing hypersonic vehicle. AIAA Atmos-pheric Flight Mechanics Conf. and Exhibit, p.2007–6397. https://doi.org/10.2514/6.2007-6397

    Google Scholar 

  • Chernoff, H., 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat., 23: 493–507. https://doi.org/10.1214/aoms/1177729330

    Article  MathSciNet  MATH  Google Scholar 

  • Dickeson, J.J., Rodriguez, A.A., Sirdharan, S., et al., 2009. Decentralized control of an air-breathing scramjet-powered hypersonic vehicle. AIAA Guidance, Naviga-tion and Control Conf., p.2009–6281. https://doi.org/10.2514/6.2009-6281

    Google Scholar 

  • Fernández, B.R., Hedrick, J.K., 1987. Control of multivariable nonlinear systems by the sliding mode method. Int. J. Contr., 46(3): 1019–1040. https://doi.org/10.1080/00207178708547410

    Article  MathSciNet  MATH  Google Scholar 

  • Fidan, B., Mirmirani, M., Ioannou, P.A., 2003. Flight dynam-ics and control of air-breathing hypersonic vehicles: re-views and new directions. AIAA Int. Space Planes and Hypersonic Systems and Technologies, p.2003–7081. https://doi.org/10.2514/6.2003-7081

    Google Scholar 

  • Ge, D.M., Huang, X.L., Gao, H.J., 2011. Multi-loop gain-scheduling control of flexible air-breathing hypersonic vehicle. Int. J. Innov. Comput. Inform. Contr., 7(10): 5865–5880.

    Google Scholar 

  • Goldberg, D.E., 1989. Genetic Algorithms in Search, Opti-mization and Machine Leaning. Addison-Wesley Pub-lishing Company Inc., Reading.

    Google Scholar 

  • Grove, K.P., Sigthorsson, D.O., Serrani, A., et al., 2005. Ref-erence command tracking for a linearized model of an air-breathing hypersonic vehicle. AIAA Guidance, Nav-igation, and Control Conf. and Exhibit, p.2005–6144. https://doi.org/10.2514/6.2005-6144

    Book  Google Scholar 

  • Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimiza-tion. Proc. IEEE Int. Conf. on Neural Networks, p.1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Google Scholar 

  • Kuipers, M.K., Ioannou, P., Fidan, B., et al., 2008. Robust adaptive multiple model controller design for an air-breathing hypersonic vehicle model. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.2008–7142. https://doi.org/10.2514/6.2008-7142

    Google Scholar 

  • Malik, R.F., Rahman, T.A., Hashim, S.Z.M., et al., 2007. New particle swarm optimizer with Sigmoid increasing inertia weight. Int. J. Comput. Sci. Secur., 1(2): 35–44.

    Google Scholar 

  • Marrison, C.I., Stengel, R.F., 1997. Robust control system design using random search and genetic algorithms. IEEE Trans. Autom. Contr., 42(6): 835–839. https://doi.org/10.1109/9.587338

    Article  MathSciNet  MATH  Google Scholar 

  • Marrison, C.I., Stengel, R.F., 1998. Design of robust control systems for a hypersonic aircraft. J. Guid. Contr. Dynam., 21(1): 58–63. https://doi.org/10.2514/2.4197

    Article  MATH  Google Scholar 

  • Parker, J.T., Serrani, A.S., Yurkovich, M.A., et al., 2007. Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Contr. Dynam., 30(3): 856–869. https://doi.org/10.2514/1.27830

    Article  Google Scholar 

  • Piccoli, B., Zadarnowska, K., Gaeta, M., 2009. Stochastic algorithms for robustness of control performances. Au-tomatica, 45(6): 1407–1414. https://doi.org/10.1016/j.automatica.2009.02.018

    MathSciNet  MATH  Google Scholar 

  • Preller, D., Smart, M.K., 2015. Longitudinal control strategy for hypersonic accelerating vehicles. J. Spacecr. Rock., 52(3): 993–999. https://doi.org/10.2514/1.A32934

    Article  Google Scholar 

  • Pu, Z.P., Tan, X.M., Fan, G.L., et al., 2014. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle. Acta Astronaut., 101: 16–32. https://doi.org/10.1016/j.actaastro.2014.01.025

    Article  Google Scholar 

  • Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3): 240–255. https://doi.org/10.1109/TEVC.2004.826071

    Article  Google Scholar 

  • Ray, L.R., Stengel, R.F., 1990. Stochastic performance ro-bustness of aircraft control system. AIAA Paper, p.1990–3410. https://doi.org/10.2514/6.1990-3410

    Google Scholar 

  • Rehman, O.U., Petersen, I.R., Fidan, B., 2013. Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles. J. Syst. Contr. Eng., 227(1): 3–11. https://doi.org/10.1177/0959651812447722

    Google Scholar 

  • Rodriguez, A.A., Dickeson, J.J., Cifdaloz, O., et al., 2008. Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, & tradeoffs. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.2008–6793. https://doi.org/10.2514/6.2008-6793

    Google Scholar 

  • Stengel, R.F., Ryan, L.E., 1989. Multivariable histograms for analysis of linear control system robustness. American Control Conf., p.937–945. https://doi.org/10.1109/ACC.1989.4173342

    Google Scholar 

  • Stengel, R.F., Ryan, L.E., 1991. Stochastic robustness of linear time-invariant control systems. IEEE Trans. Autom. Contr., 36(1): 82–87. https://doi.org/10.1109/9.62270

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q., Stengel, R.F., 2000. Robust nonlinear control of a hypersonic aircraft. J. Guid. Contr. Dynam., 23(4): 577–585. https://doi.org/10.2514/2.4580

    Article  Google Scholar 

  • Wang, Q., Stengel, R.F., 2001. Searching for robust minimal-order compensators. J. Dynam. Syst. Meas. Contr., 123(2): 233–236. http://doi.org/10.1115/1.1367270

    Article  Google Scholar 

  • Wang, Q., Stengel, R.F., 2002. Robust control of nonlinear systems with parametric uncertainty. Automatica, 38(9): 1591–1599. https://doi.org/10.1016/S0005-1098(02)00046-8

    Article  MathSciNet  MATH  Google Scholar 

  • Williams, T., Bolender, M., Doman, D., et al., 2006. An aer-othermal flexible mode analysis of a hypersonic vehicle. AIAA Paper, p.2006–6647. https://doi.org/10.2514/6.2006-6647

    Google Scholar 

  • Xu, B., Shi, Z.K., 2015. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inform. Sci., 58(7): 070201. https://doi.org/10.1007/s11432-014-5273-7

    MathSciNet  Google Scholar 

  • Xu, B., Zhang, Y., 2015. Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model. Neurocomputing, 154: 337–346. http://doi.org/10.1016/j.neucom.2014.11.059

    Article  Google Scholar 

  • Xu, B., Fan, Y.H., Zhang, S.M., 2015a. Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping. Neu-rocomputing, 164: 201–209. https://doi.org/10.1016/j.neucom.2015.02.069

    Google Scholar 

  • Xu, B., Yang, C.G., Pan, Y.P., 2015b. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neur. Netw. Learn. Syst., 26(10): 2563–2575. https://doi.org/10.1109/TNNLS.2015.2456972

    Article  MathSciNet  Google Scholar 

  • Xu, B., Guo, Y.Y., Yuan, Y., et al., 2016. Fault-tolerant con-trol using command-filtered adaptive back-stepping technique: application to hypersonic longitudinal flight dynamics. Int. J. Adapt. Contr. Signal Process., 30(4): 553–577. https://doi.org/10.1002/acs.2596

    Article  Google Scholar 

  • Xu, H.J., Mirmirani, M.D., Ioannou, P.A., 2004. Adaptive sliding mode control design for a hypersonic flight vehi-cle. J. Guid. Contr. Dynam., 27(5): 829–838. https://doi.org/10.2514/1.12596

    Article  Google Scholar 

  • Zong, Q., Wang, J., Tian, B.L., et al., 2013. Quasi-continuous higher-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp. Sci. Technol., 27(1): 127–137. https://doi.org/10.1016/j.ast.2012.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11672235)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Tang, S. & Zhang, D. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis. Frontiers Inf Technol Electronic Eng 18, 882–897 (2017). https://doi.org/10.1631/FITEE.1601363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601363

Key words

CLC number

Navigation