Skip to main content
Log in

Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbotin, Y., Hormati, A., Rangan, S., et al., 2012. Estimation of sparse MIMO channels with common support. IEEE Trans. Commun., 60(12):3705–3716. https://doi.org/10.1109/TCOMM.2012.091112.110439

    Article  Google Scholar 

  • Baum, D.S., Hansen, J., Salo, J., 2005. An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). IEEE 61st Vehicular Technology Conf., p.3132–3136. https://doi.org/10.1109/VETECS.2005.1543924

    Google Scholar 

  • Berger, C.R., Wang, Z.H., Huang, J.Z., et al., 2010. Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag., 48(11):164–174. https://doi.org/10.1109/MCOM.2010.5621984

    Article  Google Scholar 

  • Björnson, E., Larsson, E.G., Marzetta, T.L., 2015. Massive MIMO: ten myths and one critical question. IEEE Commun. Mag., 54(2):114–123. https://doi.org/10.1109/MCOM.2016.7402270

    Article  Google Scholar 

  • Bogale, T.E., Vandendorpe, L., Chalise, B.K., 2012. Robust transceiver optimization for downlink coordinated base station systems: distributed algorithm. IEEE Trans. Signal Process., 60(1):337–350. https://doi.org/10.1109/TSP.2011.2170167

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Qin, Z., 2015. Gradient-based compressive image fusion. Front. Inform. Technol. Electron. Eng., 16(3):227–237. https://doi.org/10.1631/FITEE.1400217

    Article  MathSciNet  Google Scholar 

  • Choi, J., Love, D.J., Bidigare, P., 2014. Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory. IEEE J. Sel. Top. Signal Process., 8(5):802–814. https://doi.org/10.1109/JSTSP.2014.2313020

    Article  Google Scholar 

  • Dai, L.L., Wang, J.T., Wang, Z.C., et al., 2013. Spectrum-and energy-efficient OFDM based on simultaneous multichannel reconstruction. IEEE Trans. Signal Process., 61(23):6047–6059. https://doi.org/10.1109/TSP.2013.2282920

    Article  MathSciNet  Google Scholar 

  • Dai, W., Milenkovic, O., 2009. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory, 55(5):2230–2249. https://doi.org/10.1109/TIT.2009.2016006

    Article  MathSciNet  Google Scholar 

  • Dasgupta, S., Gupta, A., 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Rand. Struct. Algor., 22(1):60–65. https://doi.org/10.1002/rsa.10073

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306. https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  Google Scholar 

  • Eldar, Y.C., Kuppinger, P., Bölcskei, H., 2010. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process., 58(6):3042–3054. https://doi.org/10.1109/TSP.2010.2044837

    Article  MathSciNet  Google Scholar 

  • Gao, X., Edfors, O., Rusek, F., et al., 2011. Linear pre-coding performance in measured very-large MIMO channels. IEEE Vehicular Technology Conf., p.1–5. https://doi.org/10.1109/VETECF.2011.6093291

    Google Scholar 

  • Gao, Z., Dai, L.L., Wang, Z., 2014. Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electron. Lett., 50(12):896–898. https://doi.org/10.1049/el.2014.0985

    Article  Google Scholar 

  • Gao, Z., Dai, L.L., Wang, Z., et al., 2015. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans. Signal Process., 63(23):6169–6183. https://doi.org/10.1109/TSP.2015.2463260

    Article  MathSciNet  Google Scholar 

  • Gao, Z., Dai, L.L., Dai, W., et al., 2016. Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Trans. Commun., 64(2):601–617. https://doi.org/10.1109/TCOMM.2015.2508809

    Article  Google Scholar 

  • Hoydis, J., Hoek, C., Wild, T., et al., 2012. Channel measurements for large antenna arrays. IEEE Int. Symp. on Wireless Communication Systems, p.811–815. https://doi.org/10.1109/ISWCS.2012.6328480

    Google Scholar 

  • Hoydis, J., Ten Brink, S., Debbah, M., 2013. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE J. Sel. Areas Commun., 31(2):160–171. https://doi.org/10.1109/JSAC.2013.130205

    Article  Google Scholar 

  • Hu, D., Wang, X.D., He, L.H., 2013. A new sparse channel estimation and tracking method for time-varying OFDM systems. IEEE Trans. Veh. Technol., 62(9):4648–4653. https://doi.org/10.1109/TVT.2013.2266282

    Article  Google Scholar 

  • Ketonen, J., Juntti, M., Cavallaro, J.R., 2010. Performancecomplexity comparison of receivers for a LTE MIMOOFDM system. IEEE Trans. Signal Process., 58(6):3360–3372. https://doi.org/10.1109/TSP.2010.2044290

    Article  MathSciNet  Google Scholar 

  • Lee, B., Choi, J., Seol, J.Y., et al., 2015. Antenna grouping based feedback compression for FDD-based massive MIMO systems. IEEE Trans. Commun., 63(9):3261–3274. https://doi.org/10.1109/TCOMM.2015.2460743

    Article  Google Scholar 

  • Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process., 8(5):742–758. https://doi.org/10.1109/JSTSP.2014.2317671

    Article  Google Scholar 

  • Noh, S., Zoltowski, M.D., Sung, Y., et al., 2014. Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE J. Sel. Top. Signal Process., 8(5):787–801. https://doi.org/10.1109/JSTSP.2014.2327572

    Article  Google Scholar 

  • Qi, C.H., Wu, L.N., 2014. Uplink channel estimation for massive MIMO systems exploring joint channel sparsity. Electron. Lett., 50(23):1770–1772. https://doi.org/10.1049/iet-com.2013.0781

    Article  Google Scholar 

  • Rao, X.B., Lau, V.K.N., 2014. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. Signal Process., 62(12):3261–3271. https://doi.org/10.1109/TSP.2014.2324991

    Article  MathSciNet  Google Scholar 

  • Tropp, J.A., Gilbert, A.C., 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655–4666. https://doi.org/10.1109/TIT.2007.909108

    Article  MathSciNet  Google Scholar 

  • Tropp, J.A., Gilbert, A.C., Strauss, M.J., 2006. Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process., 86(3):572–588. https://doi.org/10.1016/j.sigpro.2005.05.030

    Article  Google Scholar 

  • Tse, D., Viswanath, P., 2005. Fundamentals of Wireless Communication. Cambridge University Press, New York, p.309–330.

    Book  Google Scholar 

  • Yin, H.F., Gesbert, D., Filippou, M., et al., 2012. A coordinated approach to channel estimation in large-scale multipleantenna systems. IEEE J. Sel. Areas Commun., 31(2):264–273. https://doi.org/10.1109/JSAC.2013.130214

    Article  Google Scholar 

  • Zhang, Z.Y., Teh, K.C., Li, K.H., 2014. Application of compressive sensing to limited feedback strategy in largescale multiple-input single-output cellular networks. IET Commun., 8(6):947–955. https://doi.org/10.1049/iet-com.2013.0781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Zhao.

Additional information

Project supported by the Fundamental Research Funds for the Central Universities (No. HIT.MKSTISP.2016 13) and the National Natural Science Foundation of China (No. 61671176)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ry., Zhao, Hl. & Jia, Sb. Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system. Frontiers Inf Technol Electronic Eng 18, 2082–2100 (2017). https://doi.org/10.1631/FITEE.1601635

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601635

Key words

CLC number

Navigation