Skip to main content
Log in

Abstract

Because the phase contains more information about the field compared to the amplitude, measurement of the phase is encountered in many branches of modern science and engineering. Direct measurement of the phase is difficult in the visible regime of the electromagnetic wave. One must employ computational techniques to calculate the phase from the captured intensity. In this paper, we provide a review of our recent work on iterative phase retrieval techniques and their applications in optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L.J., Oxley, M.P., 2001. Phase retrieval from series of images obtained by defocus variation. Opt. Commun., 199(1–4):65–75. https://doi.org/10.1016/s0030-4018(01)01556-5

    Article  Google Scholar 

  • Anand, A., Chhaniwal, V.K., Javidi, B., 2011. Quantitative cell imaging using single beam phase retrieval method. J. Biomed. Opt., 16(6):060503. https://doi.org/10.1117/1.3589090

    Article  Google Scholar 

  • Bao, P., Zhang, F., Pedrini, G., et al., 2008. Phase retrieval using multiple illumination wavelengths. Opt. Lett., 33(4):309–311. https://doi.org/10.1364/ol.33.000309

    Article  Google Scholar 

  • Bao, P., Situ, G., Pedrini, G., et al., 2012. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths. Appl. Opt., 51(22):5486–5494. https://doi.org/10.1364/ao.51.005486

    Article  Google Scholar 

  • Bates, R.H.T., 1984. Uniqueness of solutions to twodimensional Fourier phase problems of localized and positive images. Comput. Vis. Graph. Image Process., 25(2):205–217. https://doi.org/10.1016/0734-189x(84)90103-8

    Article  Google Scholar 

  • Bauschke, H.H., Combettes, P.L., Luke, D.R., 2002. Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A, 19(7):1334–1345. https://doi.org/10.1364/josaa.19.001334

    Article  MathSciNet  Google Scholar 

  • Bian, L., Suo, J., Situ, G., et al., 2014. Content adaptive illumination for Fourier ptychography. Opt. Lett., 39(23):6648–6651. https://doi.org/10.1364/ol.39.006648

    Article  Google Scholar 

  • Bruck, Y.M., Sodin, L.G., 1979. On the ambiguity of the image reconstruction problem. Opt. Commun., 30(3):304–308. https://doi.org/10.1016/0030-4018(79)90358-4

    Article  Google Scholar 

  • Buckley, E., 2011. Holographic laser projection. J. Disp. Tech., 7(3):135–140. https://doi.org/10.1109/JDT.2010.2048302

    Article  Google Scholar 

  • Chang, H.T., Lu, W.C., Kuo, C.J., 2002. Multiple-phase retrieval for optical security systems by use of randomphase encoding. Appl. Opt., 41(23):4825–4834. https://doi.org/10.1364/ao.41.004825

    Article  Google Scholar 

  • Chen, W., Chen, X., Sheppard, C.J.R., 2010. Optical image encryption based on diffractive imaging. Opt. Lett., 35(22):3817–3819. https://doi.org/10.1364/ol.35.003817

    Article  Google Scholar 

  • Chen, W., Chen, X., Anand, A., et al., 2013a. Optical encryption using multiple intensity samplings in the axial domain. J. Opt. Soc. Am. A, 30(5):806–812. https://doi.org/10.1364/josaa.30.000806

    Article  Google Scholar 

  • Chen, W., Situ, G., Chen, X., 2013b. High-flexibility optical encryption via aperture movement. Opt. Expr., 21(21):24680–24691. https://doi.org/10.1364/oe.21.024680

    Article  Google Scholar 

  • Faulkner, H.M.L., Rodenburg, J.M., 2004. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett., 93(2):023903. https://doi.org/10.1103/physrevlett.93.023903

    Article  Google Scholar 

  • Fienup, J.R., 1980. Iterative method applied to image reconstruction and to computer-generated holograms. Opt. Eng., 19(3):297–305. https://doi.org/10.1117/12.7972513

    Article  Google Scholar 

  • Fienup, J.R., 1982. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758–2769. https://doi.org/10.1364/ao.21.002758

    Article  Google Scholar 

  • Fienup, J.R., Wackerman, C.C., 1986. Phase-retrieval stagnation problems and solutions. J. Opt. Soc. Am. A, 3(11):1897–1907. https://doi.org/10.1364/josaa.3.001897

    Article  Google Scholar 

  • Gerchberg, R.W., Saxton, W.O., 1972. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35(2):237–246.

    Google Scholar 

  • Guizar-Sicairos, M., Fienup, J.R., 2012. Understanding the twin-image problem in phase retrieval. J. Opt. Soc. Am. A, 29(11):2367–2375. https://doi.org/10.1364/josaa.29.002367

    Article  Google Scholar 

  • Guo, C., Liu, S., Sheridan, J.T., 2015a. Iterative phase retrieval algorithms. Part I: optimization. Appl. Opt., 54(15):4698–4708. https://doi.org/10.1364/ao.54.004698

    Article  Google Scholar 

  • Guo, C., Liu, S., Sheridan, J.T., 2015b. Iterative phase retrieval algorithms. Part II: attacking optical encryption systems. Appl. Opt., 54(15):4709–4718. https://doi.org/10.1364/ao.54.004709

    Article  Google Scholar 

  • Guo, C., Wei, C., Tan, J., et al., 2017. A review of iterative phase retrieval for measurement and encryption. Opt. Laser. Eng., 89:2–12. https://doi.org/10.1016/j.optlaseng.2016.03.021

    Article  Google Scholar 

  • Gülses, A.A., Jenkins, B.K., 2013. Cascaded diffractive optical elements for improved multiplane image reconstruction. Appl. Opt., 52(15):3608–3616. https://doi.org/10.1364/ao.52.003608

    Article  Google Scholar 

  • Hayes, M., 1982. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 30(2):140–154. https://doi.org/10.1109/tassp.1982.1163863

    Article  MathSciNet  Google Scholar 

  • Healy, J.J., Kutay, M.A., Ozaktas, H.M., et al., 2016. Linear Canonical Transforms: Theory and Applications. Springer New York. https://doi.org/10.1007/978-1-4939-3028-9

    Book  Google Scholar 

  • Izraelevitz, D., Lim, J., 1987. A new direct algorithm for image reconstruction from Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process., 35(4):511–519. https://doi.org/10.1109/tassp.1987.1165149

    Article  Google Scholar 

  • Johnson, E.G., Brasher, J.D., 1996. Phase encryption of biometrics in diffractive optical elements. Opt. Lett., 21(16):1271–1273. https://doi.org/10.1364/ol.21.001271

    Article  Google Scholar 

  • Kreis, T., 2005. Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/3527604154

    Google Scholar 

  • Levi, A., Stark, H., 1984. Image restoration by the method of generalized projections with application to restoration from magnitude. J. Opt. Soc. Am. A, 1(9):932–943. https://doi.org/10.1364/josaa.1.000932

    Article  MathSciNet  Google Scholar 

  • Li, Y., Kreske, K., Rosen, J., 2000. Security and encryption optical systems based on a correlator with significant output images. Appl. Opt., 39(29):5295–5301. https://doi.org/10.1364/ao.39.005295

    Article  Google Scholar 

  • Lu, C.H., Barsi, C., Williams, M.O., et al., 2013. Phase retrieval using nonlinear diversity. Appl. Opt., 52(10): D92–D96. https://doi.org/10.1364/ao.52.000d92

    Article  Google Scholar 

  • Malacara, D., Servín, M., Malacara, Z., 2005. Interferogram Analysis for Optical Testing (2nd Ed.). CRC Press. https://doi.org/10.1201/9781420027273

    Book  Google Scholar 

  • Marchesini, S., Gehrz, R.D., Roellig, T.L., et al., 2007. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum., 78(1):11301.1–11301.10.

    Article  Google Scholar 

  • Marrison, J., Räty, L., Marriott, P., et al., 2013. Ptychography—a label free, high-contrast imaging technique for live cells using quantitative phase information. Sci. Rep., 3(32):2369. https://doi.org/10.1038/srep02369

    Article  Google Scholar 

  • Millane, R.P., 1990. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A, 7(3):394–411. https://doi.org/10.1364/josaa.7.000394

    Article  Google Scholar 

  • Nakano, K., Takeda, M., Suzuki, H., et al., 2014. Security analysis of phase-only DRPE based on known-plaintext attack using multiple known plaintext-ciphertext pairs. Appl. Opt., 53(28):6435–6443. https://doi.org/10.1364/ao.53.006435

    Article  Google Scholar 

  • Nolte, D.D., 2012. Optical Interferometry for Biology and Medicine. Springer New York, USA. https://doi.org/10.1007/978-1-4614-0890-1

    Book  Google Scholar 

  • Oppenheim, A.V., Lim, J.S., 1981. The importance of phase in signals. Proc. IEEE, 69(5):529–541. https://doi.org/10.1109/proc.1981.12022

    Article  Google Scholar 

  • Refregier, P., Javidi, B., 1995. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett., 20(7):767–769. https://doi.org/10.1364/ol.20.000767

    Article  Google Scholar 

  • Rodenburg, J.M., Faulkner, H.M.L., 2004. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett., 85(20):4795–4797. https://doi.org/10.1063/1.1823034

    Article  Google Scholar 

  • Shechtman, Y., Eldar, Y.C., Cohen, O., et al., 2015. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag., 32(3): 87–109. https://doi.org/10.1109/msp.2014.2352673

    Article  Google Scholar 

  • Shi, Y., Situ, G., Zhang, J., 2007. Multiple-image hiding in the Fresnel domain. Opt. Lett., 32(13):1914–1916. https://doi.org/10.1364/ol.32.001914

    Article  Google Scholar 

  • Shi, Y., Li, T., Wang, Y., et al., 2013. Optical image encryption via ptychography. Opt. Lett., 38(9):1425–1427. https://doi.org/10.1364/ol.38.001425

    Article  Google Scholar 

  • Situ, G., Yan, L.T., 2010. Determination of polymer morphology from the intensity measurement in the reciprocal space. Eur. Poly. J., 46(9):1891–1895. https://doi.org/10.1016/j.eurpolymj.2010.06.011

    Article  Google Scholar 

  • Situ, G., Zhang, J., 2004. A lensless optical security system based on computer-generated phase only masks. Opt. Commun., 232(1–6):115–122. https://doi.org/10.1016/j.optcom.2004.01.002

    Article  Google Scholar 

  • Situ, G., Gopinathan, U., Monaghan, D.S., et al., 2007. Cryptanalysis of optical security systems with significant output images. Appl. Opt., 46(22):5257–5262. https://doi.org/10.1364/ao.46.005257

    Article  Google Scholar 

  • Situ, G., Monaghan, D.S., Naughton, T.J., et al., 2008. Collision in double random phase encoding. Opt. Commun., 281(20):5122–5125. https://doi.org/10.1016/j.optcom.2008.07.011

    Article  Google Scholar 

  • Situ, G., Pedrini, G., Osten, W., 2010. Strategy for cryptanalysis of optical encryption in the Fresnel domain. Appl. Opt., 49(3):457–462. https://doi.org/10.1364/ao.49.000457

    Article  Google Scholar 

  • Situ, G., Suo, J., Dai, Q., 2015. Generalized iterative phase retrieval algorithms and their applications. Proc. IEEE 13th Int. Conf. on Industrial Informatics, p.713–720. https://doi.org/10.1109/indin.2015.7281824

    Google Scholar 

  • Walther, A., 1963. The question of phase retrieval in optics. Opt. Acta: Int. J. Opt., 10(1):41–49. https://doi.org/10.1080/713817747

    Article  MathSciNet  Google Scholar 

  • Wang, H., Yue, W., Song, Q., et al., 2017. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation. Opt. Lasers Eng., 89:109–115. https://doi.org/10.1016/j.optlaseng.2016.04.005

    Article  Google Scholar 

  • Wang, R.K., Watson, L.A., Chatwin, C., 1996. Random phase encoding for optical security. Opt. Eng., 35(9):2464–2469. https://doi.org/10.1117/1.600849

    Article  Google Scholar 

  • Wyrowski, F., Bryngdahl, O., 1988. Iterative Fouriertransform algorithm applied to computer holography. J. Opt. Soc. Am. A, 5(7):1058–1065. https://doi.org/10.1364/josaa.5.001058

    Article  Google Scholar 

  • Zaleta, D., Larsson, M., Daschner, W., et al., 1995. Design methods for space-variant optical interconnections to achieve optimum power throughput. Appl. Opt., 34(14):2436–2447. https://doi.org/10.1364/ao.34.002436

    Article  Google Scholar 

  • Zhang, F., Pedrini, G., Osten, W., 2007. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A, 75(4):810–814. https://doi.org/10.1103/physreva.75.043805

    Google Scholar 

  • Zhang, F., Chen, B., Morrison, G.R., et al., 2016. Phase retrieval by coherent modulation imaging. Nat. Commun., 7:13367. https://doi.org/10.1038/ncomms13367

    Article  Google Scholar 

  • Zhang, Y., Pedrini, G., Osten, W., et al., 2003. Whole optical wavefield reconstruction from double or multi in-line holograms by phase retrieval algorithm. Opt. Expr., 11(24):3234–3241. https://doi.org/10.1364/oe.11.003234

    Article  Google Scholar 

  • Zheng, G., Horstmeyer, R., Yang, C., 2013. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon., 7(9):739–746. https://doi.org/10.1038/nphoton.2013.187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-hai Situ.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61377005 and 61327902) and the Chinese Academy of Sciences (No. QYZDB-SSW-JSC002)

A preliminary version was presented at the 13th IEEE International Conference on Industrial Informatics, July 22–24, 2015, UK

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Situ, Gh., Wang, Hc. Phase problems in optical imaging. Frontiers Inf Technol Electronic Eng 18, 1277–1287 (2017). https://doi.org/10.1631/FITEE.1700298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700298

Key words

CLC number

Navigation