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Abstract: Elliptic curve cryptography (ECC) is used in many security sys-
tems due to its small key size and high security as compared to the other cryp-
tosystems. In many well-known security systems substitution box (S-box) is the
only non-linear component. Recently, it is shown that the security of a cryp-
tosystem can be improved by using dynamic S-boxes instead of a static S-box.
This fact necessitates the construction of new secure S-boxes. In this paper,
we propose an efficient method for the generation of S-boxes based on a class
of Mordell elliptic curves (MECs) over prime fields by defining different total
orders. The proposed scheme is developed in such a way that for each input it
outputs an S-box in linear time and constant space. Due to this property, our
method takes less time and space as compared to all existing S-box construction
methods over elliptic curve. Furthermore, it is shown by the computational re-
sults that the proposed method is capable of generating cryptographically strong
S-boxes with comparable security to some of the existing S-boxes constructed
over different mathematical structures.

Key words: Mordell elliptic curve; Finite field; Substitution box; Total
order; Computational complexity

1 Introduction

Cryptography deals with the techniques to secure the private data. In these
techniques, the data is transformed into an unreadable form by using some keys
so that the adversaries cannot extract any useful information. S-box is the only
non-linear component of many well-known cryptosystems including Advanced
Encryption System (AES). It is therefore the security of such cryptosystems
solely depends on the cryptographic properties of their S-boxes. Shannon [33]
proved that a cryptosystem is secure, if it can create confusion and diffusion
in the data up to a certain level. An S-box is cryptographically strong enough
to create desire confusion and diffusion, if it satisfies certain tests including the
test of non-linearity, approximation, strict avalanche, bit independence and al-
gebraic complexity. Nowadays, AES is considered to be the most secured and
widely used cryptosystem, and hence many cryptographers studied its S-box.
The study in [35, 5, 26, 30] reveals that the AES S-box is vulnerable against
algebraic attacks because of its sparse polynomial representation. It is also no-
ticed that a cryptosystem based on a single S-box is unable to generate desirable
security, if the data is highly correlated [2, 15]. Furthermore, it is shown that the
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security of a cryptosystem can be improved by using dynamic S-boxes instead
of a static S-box, see for example [31, 20, 27, 1, 25, 19]. The two main reasons
behind this are: (a) static S-box is vulnerable to data analysis attack and sub-
key attacks in which subkeys are obtained by using inverse subbyte, if inverse
of the S-box is known [31]; and (b) it is shown in [20, 27, 1, 25, 19] that the
algorithms using dynamic S-box are more complex and provide more overhead
to the cryptanalysts when compared with static S-box. Different image encryp-
tion algorithms by using dynamic S-box are presented in [40, 37, 8, 24]. In these
studies it turned out that the image cryptosystems based on a dynamic S-box
provide better security when compared with the cryptosystems using a static
S-box. Due to these reasons many researchers have proposed new S-box genera-
tion techniques based on different mathematical structures including algebraic,
and differential equations.

For an S-box design technique, it is necessary that the resultant S-box: (a)
inherits the properties of the underlying mathematical structure. This is an
important requirement which leads to the efficient generation and better under-
standing of the cryptographic properties of the S-box; (b) is generated in low
time and space complexity; and (c) satisfies the security tests. Of course, an
S-box generation technique with high time complexity is not suitable for the
cryptosystems using multiple, and dynamic S-boxes. Lui et al., [23] presented
an improved AES S-box based on an algebraic method. Cui et al., [6] used an
affine function to generate an S-box with 253 non-zero terms in its polynomial
representation. Tran et al., [36] used composition of a Gray code instead of an
affine mapping with the AES S-box to generate an S-box with high algebraic
complexity. Khan and Azam [21] proposed different methods for the generation
of cryptographically strong S-boxes based on a generalization of Gray S-box, and
affine functions, see [22]. Azam [2] used the later S-boxes for the encryption of
confidential images. Chaotic maps including Baker, logistic, and Chebyshev
maps are used to generate new S-boxes in [11, 10, 29]. Similarly, elliptic curves
(ECs) are also used in the field of cryptography for the development of highly
secure cryptosystems. Miller [28] presented an EC based security system which
has smaller key size and higher security as compared to RSA. Jung et al., [17]
developed a link between the points on hyper-elliptic curves and non-linearity
of an S-box. Hayat et al., [12, 13] for the first time used EC over a prime field
for the generation of dynamic S-boxes. In these schemes, an S-box is generated
by using the x-coordinates of the points on an ordered EC over a prime p, where
the ordering ≺ on the points is performed with respect to their values i.e., for
any two points (x1, y1) and (x2, y2) on the EC, (x1, y1) � (x2, y2), if (y

2
1 ≤ y22)

(mod p). Actually, the scheme in [13] is a generalization of the scheme in [12].
Although these methods are capable of generating cryptographically strong S-
boxes, but they have the next two weak points. Firstly, they need to compute
and store the EC for their generation process. Due to this, the time and space
complexity of these schemes are O(p2) and O(p), respectively, where p ≥ 257
is the prime of the underlying EC. Secondly, the output of these schemes is
uncertain i.e., for each set of input parameters the algorithms do not necessarily
output an S-box.
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The purpose of this article is to develop such a novel and efficient S-box gen-
eration technique based on a finite Mordell elliptic curve (MEC) which generates
secure S-box inheriting the properties of the underlying MEC for each set of in-
put parameters. To achieve this, we defined some typical type of total orders
on the points of the MEC, and then used y-coordinates instead of x-coordinates
to obtain an S-box. The remaining paper is organized as follows: Some basic
definitions and results related to EC are discussed in Section 2. The proposed
algorithm is described in Section 3. Section 4 contains the security analysis,
while a detailed comparison of the newly developed scheme with some of the
existing methods is performed in Section 5. Finally, conclusions are drawn in
Section 6.

2 Preliminaries

For a prime p, and two non-negative integers a, b ≤ p−1, the EC Ep,a,b over the
prime field Fp is defined to be the collection of infinity point O, and all ordered
pairs (x, y) ∈ Fp × Fp satisfying the equation

y2 ≡ x3 + ax+ b (mod p).

We call p, a, and b the parameters of the EC Ep,a,b. An approximation for the
number of points #Ep,a,b on Ep,a,b can be obtained by using Hasse’s formula
[39, 3]

|#Ep,a,b − p− 1| ≤ 2
√
p.

Mordell elliptic curve (MEC) is a special kind of elliptic curve with a = 0.
The significance of some MECs Ep,0,b is that they have exactly p + 1 points.
The following Theorem [39] gives the information of such MECs.

Theorem 1 Let p > 3 be a prime such that p ≡ 2 (mod 3). Then for each
b ∈ Fp, the MEC Ep,0,b has exactly p + 1 distinct points, and has each integer
in [0, p− 1] exactly once as a y-coordinate.

Henceforth, a MEC Ep,0,b, where p ≡ 2 (mod 3), is simply denoted by Ep≡2,b.

3 Description of the Proposed S-box Designing
Technique

In this section, we give an informal intuition of our proposed method. Our aim
is to develop such an S-box generation technique based on a MEC which outputs
an S-box: (a) in linear time and constant space for each set of input parameters;
(b) that inherits the properties of the underlying MEC; and (c) having high
security against cryptanalysis. Note that the S-box design techniques proposed
by [12, 13] do not satisfy conditions (a) and (b). One of the possible ways of
designing such a technique is to input such an EC which contains all integer
values from [0, 255] without repetition. It is, therefore, the proposed algorithm
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takes a MEC Ep≡2,b as an input, and uses y-coordinates to generate an S-box
instead of x-coordinates. The next task is to use these y-coordinates in such a
way that the resultant S-box inherits the properties of the underlying MEC. Of
course, the usage of some arithmetic operations such as modulo operation for
this purpose S-box will destroy the structure of the underlying MEC. Thus, we
used the concept of total order on the MEC to get an S-box. Order theory is
intensively used in formal methods, programming languages, logic, and statistic
analysis. Now the natural question is how to define different orderings on the
MEC. Note that for each x value of MEC, there are two y values. Thus, we
can divide the orderings on MEC into two categories: (1) one is that in which
the two y values of each x appear consecutively; and (2) the other one contains
those orderings in which the two y values of each x do not appear consecutively.
Based on this fact, we defined three different type of orderings on a given MEC
Ep≡2,b to generate three different S-boxes.

3.1 The proposed orderings on a MEC Ep≡2,b

The orderings used in the proposed method are discussed below.
(1) A natural ordering on a MEC: We define a natural ordering ≺N on

Ep≡2,b based on x-coordinates as follows

(x1, y1) ≺N (x2, y2) ⇔
{

either if x1 < x2; or
if x1 = x2, and y1 < y2,

(1)

where (x1, y1), (x2, y2) ∈ Ep≡2,b.
The aim of this ordering is to sort the points on the MEC in such a way

that the x-coordinates are in non-decreasing order, and the two y values corre-
sponding to each x appear consecutively.

The next two orderings are introduced based on the following observation
deduced from Theorem 1 to diffuse the y-coordinates on a MEC.

Observation: For any two distinct points (x1, y1) and (x2, y2) on the MEC
Ep≡2,b, and either x1 + y1 = x2 + y2 or x1 + y1 ≡ x2 + y2(mod p), it holds that
x1 6= x2.

(2) A diffusion ordering on a MEC: An ordering is defined on Ep≡2,b

to diffuse the two y values of each x. Let (x1, y1) and (x2, y2) be any two points
on Ep≡2,b, the diffusion ordering ≺D is defined to be

(x1, y1) ≺D (x2, y2) ⇔
{

either if x1 + y1 < x2 + y2; or
if x1 + y1 = x2 + y2, and x1 < x2.

(2)

Lemma 2 The relation ≺D is a total order on the MEC Ep≡2,b.

Proof. For each (x1, y1) ∈ Ep≡2,b, we have x1 + y1 = x1 + y1, and there-
fore (x1, y1) ≺D (x1, y1). This implies that ≺D is reflexive. Next, we need to
show that ≺D satisfies the antisymmetric property. Thus, for (x1, y1), (x2, y2) ∈
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Ep≡2,b, suppose that (x1, y1) ≺D (x2, y2), and (x2, y2) ≺D (x1, y1) hold. This
implies that x1 + y1 = x2 + y2. This is because of the fact that x1 + y1 <

x2 + y2, and x2 + y2 < x1 + y1 are the only cases for which the supposition
and x1 + y1 6= x2 + y2 are true, which eventually imply that x1 + y1 = x2 + y2.

Now if x1 6= x2, then by the supposition and the fact x1 + y1 = x2 + y2,
we have x1 < x2 and x2 < x1, which lead to the contradiction x1 = x2.
Thus x1 + y1 = x2 + y2 and x1 = x2 hold, which ultimately imply that
y1 = y2, and therefore (x1, y1) = (x2, y2). Now, to prove the transitivity prop-
erty, suppose that (x1, y1) ≺D (x2, y2), and (x2, y2) ≺D (x3, y3) hold, where
(x1, y1), (x2, y2), (x3, y3) ∈ Ep≡2,b. Now if x1+y1 < x2+y2 and x2+y2 ≤ x3+y3,
or x1+y1 = x2+y2 and x2+y2 < x3+y3, then x1+y1 < x3+y3, and therefore
(x1, y1) ≺D (x3, y3). Similarly, if x1 + y1 = x2 + y2 = x3 + y3, then x1 < x2 and
x2 < x3, and hence x1 + y1 = x3 + y3 and x1 < x3. This completes the proof.

(3) A modulo diffusion ordering on a MEC: The order ≺M defined be-
low produces diffusion in both x-coordinates and y-coordinates of the points on
Ep≡2,b. Let (x1, y1), (x2, y2) ∈ Ep≡2,b, then

(x1, y1) ≺M (x2, y2) ⇔
{

either if (x1 + y1 < x2 + y2)(mod p); or
if x1 + y1 ≡ x2 + y2(mod p), and x1 < x2.

(3)

Lemma 3 The relation ≺M is a total order on the MEC Ep≡2,b.

Lemma 3 can be proved by using the similar arguments as used in the proof
of Lemma 2.

The effect of these orderings ≺N ,≺D and ≺M on y-coordinates of the MEC
E101≡2,1 is shown in Figure 1 by plotting them in a non-decreasing order of their
points on the MEC w.r.t ≺N ,≺D and ≺M , respectively.
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Figure 1: The arrangements of y-coordinates of E101≡2,1 w.r.t. the proposed
orderings

Similarly, a relation among the sets of all y-coordinates of the MEC Ep≡2,b

obtained by different proposed orderings≺H and ≺K , whereH,K ∈ {N,D,M},
is quantified by computing their correlation coefficient ρHK . The correlation
results for different MECs are shown in Table 1. It is evident from the results
that each ordering has different effect on the y-coordinates of the underlying
MEC.

Table 1: Results of the correlation test

p b ρND ρND ρDM

101 1 -0.0588 0.0550 -0.0497
827 87 -0.0044 0.0008 0.0027
1013 118 0.0028 -0.0059 0.0003
2027 8 0.0007 -0.0068 -0.0002
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3.2 The proposed S-box construction method

Let Ep≡2,b be a Mordell elliptic curve (MEC), where p ≥ 257. The lower bound
on the prime p is 257 for the proposed method so that MEC has at least 256
points. An S-box SH

p,b, where H ∈ {N,D,M}, is generated by selecting the y-

coordinates on Ep≡2,b which are in the interval [0, 255] as SH
p,b : {0, 1, . . . , 255} →

{0, 1, . . . , 255} defined as SH
p,b(i) = yi, such that (xi, yi) ∈ Ep≡2,b, and

(xi−1, yi−1) ≺H (xi, yi).
It is clear from Theorem 1 that SH

p,b is a bijection, which further implies that
the proposed method generates an S-box for each set of input parameters.

Lemma 4 For any prime p ≥ 257 such that p ≡ 2 (mod 3), integer b ∈ [0, p−1],
and H ∈ {N,D,M}, the S-box SH

p,b can be generated in time complexity O(p)
and constant space.

Proof. The generation of SH
p,b requires calculation of 256 points on the MEC

with y-coordinates in [0, 255], and then their sorting. The calculation of 256
points on the MEC can be done in O(p), since for each y ∈ [0, 255], a for
loop of size p is required to find integer x such that (x, y) is a point on the
MEC. However, the sorting of these 256 points can be done in a constant time
with respect to the ordering H . Thus, SH

p,b can be generated in O(p) time.
Furthermore, the generation process store only 256 points on the MEC for
sorting purpose, and therefore it takes constant space.

It is evident from Lemma 4 that the time and space complexity of the pro-
posed S-box generation method is independent of the parameter b and the or-
dering on the underlying MEC. An algorithmic description of the proposed
generation method is given in Algorithm 1.

Algorithm 1 The proposed S-box generation method

Input: A Mordell elliptic curve Ep,b, where p ≡ 2 (mod 3), with a total order
H ∈ {N,D,M}.

Output: The proposed S-box SH
p,b.

1: A := ∅; /* The set of 256 points of the MEC with y-coordinates in [0, 255]*/
2: for each y = 0, 1, . . . , 255 do
3: while x ∈ [0, p− 1] do
4: if x3 + b ≡ y2 (mod p) then
5: A := A ∪ {(x, y)}
6: end if
7: end while
8: end for
9: Sort A with respect to the ordering H ;

10: Output all y-coordinates of the points in A preserving their order as the
S-box SH

p,b.

The S-boxes SN
1667,351, S

D
3299,1451 and SM

4229,2422 generated by the proposed
technique are presented in Tables (11)-(13), respectively.
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4 Security Analysis

Several standard tests are applied on the S-boxes obtained by the proposed
method to test their cryptographic strength. A brief introduction to these se-
curity tests, and their results for some of the newly generated S-boxes SN

1667,351,

SN
1949,544, SN

3023,626, S
D
3299,1451, SD

3041,1298, SD
3347,2937, SM

4229,2422, SM
4217,1156 and

SM
3299,1400 are discussed in this section.

4.1 Non-Linearity (NL)

It is important for an S-box to create confusion in the data up to a certain level
to keep the data secure from the adversaries. The confusion creation capability
of an S-box S over the Galois Field GF (28) is measured by its non-linearity
N (S), which is defined below

N (S) = min
α,β,γ

{x ∈ GF (28) : α · S(x) 6= β · x⊕ γ},

where α ∈ GF (28), γ ∈ GF (2), β ∈ GF (28)\{0} and “·” represents dot product
over GF (2).

An S-box with high NL is capable of generating high confusion in the data.
However, it is also shown in [38] that an S-box with high NL may not satisfy
other cryptographic properties. The NL of some of the newly constructed S-
boxes is listed in Table 2. Note that each listed S-box has NL 106, which is
large enough to create high confusion.

Table 2: Non-linearity of the newly generated S-boxes

S-boxes S
N
1667,351 S

N
1949,544 S

N
3023,626 S

D
3299,1451 S

D
3041,1298 S

D
3347,2937 S

M
4229,2422 S

M
4217,1156 S

M
3299,1400

NL 106 106 106 106 106 106 106 106 106

4.2 Approximation Attacks

A cryptographically strong S-box must have high resistance against approxi-
mation attacks. The approximation attacks can be divided into two categories
namely linear approximation attacks, and differential approximation attacks
which are explained below.

The resistance of an S-box S against linear approximation attacks is mea-
sured by calculating its maximum number L(S) of coincident input bits with
the output bits. The mathematical expression of L(S) is as follows

L(S)= 1

28

{

max
α,β

{∣

∣#
{

x ∈ GF (28) : α · x = β · S(x)
}

−27
∣

∣

}

}

,

where α ∈ GF (28) and β ∈ GF (28)\{0}.
An S-box S is said to be highly resistive against linear approximation attacks

if it has low value of L(S). The LAP of the newly generated S-boxes is listed
in Table 3. The average LAP of all of the listed S-boxes is 0.1371 which is very
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Table 3: LAP of the newly generated S-boxes

S-boxes S
N
1667,351 S

N
1949,544 S

N
3023,626 S

D
3299,1451 S

D
3041,1298 S

D
3347,2937 S

M
4229,2422 S

M
4217,1156 S

M
3299,1400

LAP 0.1328 0.1328 0.1406 0.1484 0.1328 0.1406 0.1328 0.1328 0.1406

low, and hence the proposed scheme is capable of generating S-boxes with high
resistance against linear approximation attacks.

4.2.1 Differential Approximation Probability (DAP)

The strength of an S-box against differential approximation attacks is measured
by calculating its DAP. For an S-box S, the DAP D(S) is the maximum proba-
bility of a specific change △y in the output bits S(x) when the input bits x are
changed to x⊕△x i.e.,

D(S)=
1

28

{

max
△x,△y

{

#
{

x ∈ GF (2
8
) : S(x⊕△x) = S(x) ⊕△y

}}

}

,

where △x, △y ∈ GF (28), and “⊕” is bit-wise addition over GF (2).
The smaller is the value of DAP, the higher is the security of the S-box

against differential approximation attacks. The experimental results of DAP on
the newly generated S-boxes are presented in Table 4. It is evident from Table
4 that the newly generated S-boxes have high resistance against differential
attacks.

Table 4: DAP of the newly generated S-boxes

S-boxes S
N
1667,351 S

N
1949,544 S

N
3023,626 S

D
3299,1451 S

D
3041,1298 S

D
3347,2937 S

M
4229,2422 S

M
4217,1156 S

M
3299,1400

DAP 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391

4.3 Strict Avalanche Criterion (SAC)

The diffusion creation capability of an S-box is calculated by SAC. The SAC of
an S-box S is the measure of change in output bits when a single input bit is
changed. The SAC of an S-box S with boolean functions Si, where 1 ≤ i ≤ 8,
is computed by calculating an eight dimensional square matrix M(S) = [mij ]

by using each of the eight elements αj∈ GF (2
8
) with only one non-zero bit as

mij =
1

28





∑

x∈GF (28)

w
(

Si(x⊕ αj)⊕ Si(x)
)



 ,

where w(v) denotes the number of non-zero bits in the vector v.
SAC test is fulfilled, if all entries of M(S) are close to 0.5. The entries of

SAC matrix corresponding to each newly generated S-boxes SN
1667,351, S

D
3299,1451

and SM
4229,2422 are plotted in a linear order in Figure 2. The average of minimum,

and maximum values of M(S) corresponding to each of the newly generated S-
boxes are 0.4115 and 0.6094, respectively. Table 5 clearly shows that the S-boxes
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generated by the proposed method based on a MEC is capable of generating
high diffusion in the data.

Table 5: SAC of the newly generated S-boxes

S-boxes S
N
1667,351 S

N
1949,544 S

N
3023,626 S

D
3299,1451 S

D
3041,1298 S

D
3347,2937 S

M
4229,2422 S

M
4217,1156 S

M
3299,1400

SAC(max) 0.5938 0.625 0.6563 0.6406 0.6094 0.6094 0.5938 0.6094 0.625
SAC(min) 0.4531 0.4219 0.4219 0.4063 0.4219 0.4063 0.375 0.3906 0.3594
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Figure 2: SAC matrix plot for SN
1667,351, S

D
3299,1451 and SM

4229,2422

4.4 Bit Independence Criterion (BIC)

BIC is also an important test to measure the diffusion creation strength of an
S-box. The main idea of this test is to investigate the dependence of a pair
of output bits when an input bit is reversed. The BIC of an S-box S over
GF (28) with Si boolean functions is also calculated by computing a square
matrix N(S) = [nij ] of dimension eight as follows

nij =
1

28









∑

x∈GF (28)
1≤k≤8

w
(

Si(x ⊕ αj)⊕ Si(x) ⊕ Sk(x+ αj)⊕ Sk(x)
)









.
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Of course nii = 0. An S-box is said to be good if all off-diagonal values of its
BIC matrix are near to 0.5. The experimental results of this test on the newly
generated S-boxes SN

1667,351,S
D
3299,1451 and SM

4229,2422, excluding the value 0, are
shown in a linear order in Figure 3. The minimum, and maximum values of BIC
matrix N(S) of each of the newly generated S-boxes are listed in Table 6. It is
evident from Figure 3 and Table 6 that the S-boxes generated by the proposed
methods are strong enough to generate high diffusion in the data.

Table 6: BIC of the newly generated S-boxes

S-boxes S
N
1667,351 S

N
1949,544 S

N
3023,626 S

D
3299,1451 S

D
3041,1298 S

D
3347,2937 S

M
4229,2422 S

M
4217,1156 S

M
3299,1400

BIC(max) 0.5273 0.5293 0.5313 0.5371 0.5273 0.5254 0.5254 0.5313 0.5449
BIC(min) 0.4648 0.4629 0.4707 0.4707 0.4844 0.4746 0.4688 0.4766 0.4727

0 10 20 30 40 50 60

BIC matrix linear indices
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Figure 3: BIC matrix plot for SN
1667,351,S

D
3299,1451 and SM

4229,2422

4.5 Algebraic Complexity(AC)

The resistance of an S-box against algebraic attacks is measured by computing
its linear polynomial. The AC of an S-box is the number of non-zero terms in its
linear polynomial. The greater is the AC, the greater is the security of the S-box
against algebraic attacks. The AC of the newly generated S-boxes is computed,
and is presented in Table 7. The minimum, and maximum values of AC of the
newly generated S-boxes are 253, and 255, respectively, which are very close to
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the optimal value 255. Thus, the proposed method is able to generate S-boxes
with good AC based on a MEC.

Table 7: The AC of the newly generated S-boxes

S-boxes S
N
1667,351 S

N
1949,544 S

N
3023,626 S

D
3299,1451 S

D
3041,1298 S

D
3347,2937 S

M
4229,2422 S

M
4217,1156 S

M
3299,1400

AC 254 254 255 255 254 255 253 253 255

5 Comparison and Discussion

A detailed comparison of the proposed S-box construction method is performed
in this section.

5.1 Time and Space Complexity

It is always desirable to have algorithms with low time and space complexity
from implementation point of view. The time and space complexity of the
proposed method and other S-box generation methods [12, 13] based on ECs
are compared in Table 8. Note that each method in [12, 13] has quadratic
time complexity, while the proposed method takes linear time in the underlying
prime p for the generation of an S-box. However, the space complexity of the
methods in [12, 13] is O(p), where p is the underlying prime, while it is constant
for the proposed method. Hence, the newly developed method is more suitable
for the implementation when compared to all existing S-box generation methods
over EC.

Table 8: Comparison of time and space complexity of the proposed method with
other methods over ECs

S-box Ref. [12] Ref. [13] Proposed method

Time complexity O(p2) O(p2) O(p)
Space complexity O(p) O(p) O(1)

5.2 Generation Efficiency

For a good dynamic S-box construction scheme, it is necessary to ensure the gen-
eration of S-box for each valid input parameters, and construct enough number
of distinct S-boxes. It is evident from Theorem 1 that the proposed method
always generate an S-box for each input, while the output of the methods
in [12, 13] are uncertain i.e., they do not guarantee the construction of S-boxes
for each input. This implies that the proposed method is better than the other
existing schemes over ECs.

The proposed method can generate at most p − 1 number of distinct S-
boxes for a given prime p and ordering, since for each b ∈ [1, p − 1] it can
generate exactly one S-box. We generated all S-boxes by the proposed method
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for different primes p = 257, 263, 269, 281, 293, 1013, 1019, 1031, 1049, 1061 and
1997 and each ordering developed in this paper. The number of distinct S-boxes
for each ordering is same for all the primes and is listed in listed in Table 9. It is
evident from Table 9 that the number of distinct S-boxes generated by proposed
S-box design scheme attains the optimal value and increases with the increase
in the size of the prime. Hence, one can generate the desired number of distinct
S-boxes by using the proposed method on a appropriate prime.

Table 9: The number of distinct S-boxes constructed by the proposed scheme
for some primes

p 257 263 269 281 293 1013 1019 1031 1049, 1061 1997
Distinct S-boxes 256 262 268 280 292 1012 1018 1030 1048 1060 1996

5.3 Cryptographic Properties

The cryptographic properties of some of the S-boxes constructed by the proposed
method are compared with some of the well-known existing S-boxes due to
[11, 10, 29, 32, 16, 18, 14, 7, 9, 4, 34] generated by different mathematical
structures. The properties of the S-boxes used in this comparison are listed in
Table 10. Note that the non-linearity (NL) of the S-boxes SN

1667,351, S
D
3299,1451

and SM
4229,2422 is greater than that of the S-boxes in [11, 10, 12, 18, 9, 4, 34], and

hence the newly generated S-boxes create better confusion in the data when
compared to the later S-boxes. This implies that the proposed technique is
capable of generating S-boxes with good NL when compared to some of the other
existing techniques. Moreover, the linear approximation probability (LAP) of
the newly generated S-boxes is better than the LAP of the S-boxes in [11,
10, 29, 9, 4, 34], while their differential approximation probability (DAP) is at
most the DAP of the S-boxes in [11, 10, 29, 12, 18, 9, 4, 34]. Thus, the S-
boxes generated by the proposed technique have same or better security against
approximation attacks as compared to the other S-boxes. Similarly, the SAC,
BIC and AC test results of the newly generated S-boxes are comparable with
the S-boxes listed in Table 10. Hence, the proposed S-box generation technique
based on a MEC is capable of generating S-boxes with cryptographic properties
comparable with some of the existing S-box construction techniques based on
different mathematical structures.
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Table 10: Comparison of the newly generated S-boxes with some of the existing
S-boxes

S-boxes NL LAP DAP SAC(Max) SAC(Min) BIC(Max) BIC(Min) AC

Ref. [11] 103 0.1328 0.0391 0.5703 0.4414 0.5039 0.4961 255
Ref. [10] 102 0.1484 0.0391 0.6094 0.375 0.5215 0.4707 254
Ref. [29] 106 0.1406 0.0391 0.5938 0.4375 0.5313 0.4648 251
Ref. [12] 104 0.0391 0.0391 0.625 0.3906 0.53125 0.4707 255
Ref. [18] 104 0.109 0.0469 0.593 0.39 0.499 0.454 255
Ref. [7] 112 0.062 0.0156 0.562 0.453 0.504 0.480 9
Ref. [9] 74 0.2109 0.0547 0.6875 0.1094 0.5508 0.4023 253
Ref. [4] 100 0.1328 0.0547 0.6094 0.4219 0.5313 0.4746 255
Ref. [34] 103 0.1328 0.0391 0.5703 0.3984 0.5352 0.4727 255
S

N
1667,351 106 0.1328 0.0391 0.5938 0.4531 0.5273 0.4648 254

S
D
3299,1451 106 0.1484 0.0391 0.6406 0.4063 0.5371 0.4707 255

S
M
4229,2422 106 0.1328 0.0391 0.5938 0.375 0.5254 0.4688 253

6 Conclusion

In this article, we presented an S-box design scheme based on y-coordinates of
a finite Mordell elliptic curve (MEC), where prime is congruent to 2 modulo 3.
The technique uses some special type of total orders on the points of the MEC,
and generates an S-box. The main advantages of the proposed method are that
it has linear time complexity, constant space complexity and generate an S-box
for each input parameter which are not possible in all existing S-box generation
schemes over elliptic curves. Several standard security tests are performed on
the S-boxes generated by the proposed method to analyze its cryptographic
efficiency. Experimental results show that the proposed scheme can generate
cryptographically strong S-boxes. Furthermore, it is shown by computational
results that the cryptographic properties of the newly generated S-boxes are
comparable with some of the well-known existing S-boxes generated by different
mathematical structures.

References

[1] Agarwal P, Singh A, Kilicman A, 2018. Development of Key–Dependent Dynamic

S-Boxes with Dynamic Irreducible Polynomial and Affine Constant. Advances in

Mechanical Engineering, 10(7):1-18.

[2] Azam N A, 2017. A Novel Fuzzy Encryption Technique Based on Multiple Right

Translated AES Gray S-Boxes and Phase Embedding. Security and Communica-

tion Networks, Volume 2017, 1-9.

[3] Brown D R L, 2009. SEC 1: Elliptic curvecryptography. Mossossaiga: Certicom

Corp.

14



[4] Chen G, Chen Y, Liao X, 2007. An extended method for obtaining S-boxes based

on three-dimensional chaotic baker maps. Chaos, Solitons and Fractals, 31(3):571-

579.

[5] Courtois N T, Josef P, 2002. Cryptanalysis of block ciphers with over defined

systems of equations. ASIACRYPT 2002 LNCS, 2501, 267-287.

[6] Cui L, Cao Y, 2007. A new S-box structure named affine power-affine. Interna-

tional Journal of Innovative Computing, Information and Control, 3:751-759.

[7] Daemen J, Rijmen V, 2002. The Design of Rijndael-AES:The Advanced Encryp-

tion Standard, Springer, Berlin, Germany.

[8] Devaraj P, Kavitha C, 2016. An Image Encryption Scheme Using Dynamic S-

boxes. Nonlinear Dyn, 86:927-940.

[9] Gautam A, Gaba G S, Miglani R et al., 2015. Application of Chaotic Functions

for Construction of Strong Substitution Boxes. Indian Journal of Science and

Technology, 8(28):1-5.

[10] Guo C, 2008. A novel heuristic method for obtaining S-boxes. Chaos, Solitons

and Fractals, 36:1028-1036.

[11] Guoping T, Xiaofeng L, Yong C, 2005. A novel method for designing S-boxes

based on chaotic maps. Solitons and Fractals, 23:413-419.

[12] Hayat U, Azam N A, Asif M, 2018. A Method of Generating 8× 8 Substitution

Boxes Based on Elliptic Curves. Wireless Personal Communications, 101:439-451.

[13] Hayat U, Azam N A, 2019. A Novel Image Encryption Scheme Based on Elliptic

Curves. Signal Processing, 155:391-402.

[14] Hussain I, Shah T, Gondal M A et al., 2013. A group theoretic approach to

construct cryptographically strong substitution boxes. Neural Computing and

Applications, 23:97-104.

[15] Hussain I, Azam N A, Shah T, 2014. Stego optical encryption based on chaotic

S-box transformation. Optics and Laser Technology, 61:50-56.

[16] Jakimoski G, Kocarev L, 2001. Chaos and cryptography: block encryption ci-

phers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, 48:163-170.

[17] Jung H C, Seongtaek C, Choonsik P, 1999. S-boxes with controllable nonlinearity.

EUROCRYPT ’99. LNCS, 1592, 286:294.

[18] Kim J, Phan R C W, 2009. Advanced differential-style cryptanalysis of the NSA’s

skipjack block cipher. Cryptologia, 33:246-270.

[19] Kazlauskas K, Kazlauskas J, 2009. Key-Dependent S-Box Generation in AES

Block Cipher System. INFORMATICA, 20(1):23-34.

15



[20] Katiyar S, Jeyanthi N, 2016. Pure Dynamic S-box Construction. International

Journal of Computers, 1:42-46.

[21] Khan M, Azam N A, 2015. Right translated AES Gray S-box. Security and

Network Communication, 8:1627-1635.

[22] Khan M, Azam N A, 2015. S-boxes based on affine mapping and orbit of power

function. 3D Research, 6(12):1-15.

[23] Liu J, Wai B, Cheng, X, et al., 2005. An AES S-box to increase complexity and

cryptographic analysis. In Proceedings of the 19th international conference on

advanced information networking and applications, Taiwan, 724-728.

[24] Liu Y, Wang J, Fan, J, et al., 2016). Image Encryption Algorithm Based on

Chaotic System and Dynamic S-boxes Composed of DNA sequences. Multimed

Tools Appl, 75:4363–4382.

[25] Maram B, Gnanasekar J M, 2016. Evaluation of Key Dependent S-Box Based

Data Security Algorithm using Hamming Distance and Balanced Output. TEM

J, 5:67-75.

[26] Murphy S, Robshaw M J, 2002. Essential algebraic structure within the AES.

Proceedings of the 22th annual international cryptology. Berlin: Springer, 1-16.

[27] Manjula G, Mohan H S, 2013. Constructing Key Dependent Dynamic S-Box

for AES Block Cipher System. 2nd International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT), 613-617.

[28] Miller V, 1986. Uses of elliptic curves in cryptography. Advances in Cryptology,

85:417-426.

[29] Neural Y W, Li Y, Min L et al., 2010. A method for designing S-box based on

chaotic neuralnetwork. In 2010 Sixth international conference on natural compu-

tation (ICNC).

[30] Rosenthal J, 1949. A polynomial description of the Rijndael advanced encryption

standard. Journal of Algebra and its Applications, 2:223-236.

[31] Rahnama B, Kran Y, Dara R, 2013. Countering AES Static S-Box Attack, SIN

13. Proceedings of the 6th International Conference on Security of Information

and Networks, 256-260.

[32] Shi X Y, Xiao H, You X C et al., 1997. A method for obtaining cryptographically

strong 8× 8 S-boxes. Conference on Information Network and Application, 2:689-

693.

[33] Shannon C E, 1949. Communications theory of secrecy systems. Bell Labs Tech-

nical Journal, 12:656-715.

[34] Tang G, Liao X, Chen Y, 2005. A novel method for designing S-boxes based on

chaotic maps. Chaos, Solitons and Fractals, 23(2):413-419.

16



[35] Thomas J, Knudsen L R, 1997. The interpolation attack on block ciphers. Inter-

national workshop on fast software encryption (FSE). Fast Software Encryption,

28-40.

[36] Tran M T, Bui D K, Doung A D, 2008. Gray S-box for advanced encryption

standard. International Conference on Computational Intelligence and Security,

1:253-258.

[37] Wang X, Wang Q, 2014. A Novel Image Encryption Algorithm Based on Dynamic

S-boxes Constructed by Chaos. Nonlinear Dyn, 5:567-576.

[38] Willi M, Othmar S 1990. Nonlinearity criteria for cryptographic functions. Ad-

vances in Cryptology-EUROCRYPT ’89 LNCS. 434:549-562.

[39] Washington L C, 2008. Number Theory: Elliptic Curves and Cryptography. vol.

50 of Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2nd

ed.

[40] Zaibi G, Kachouri A, Peyrard F, et al., 2009. On dynamic chaotic S-Box. In

Information Infrastructure Symposium, 2009. GIIS’09. Global. IEEE, 1-5.

7 Appendix: S-boxes generated by proposed method
Table 11: The S-box SN

1667,351 generated by the proposed method based on the
natural ordering

154 217 227 110 85 29 199 37 68 21 91 78 208 3 148 40
198 52 54 2 73 7 168 201 229 184 146 6 172 28 44 67
195 53 106 10 204 131 157 185 187 156 206 161 81 103 211 33
96 159 72 134 164 143 140 193 145 231 237 12 221 188 197 116
47 19 129 104 51 236 56 133 55 220 87 1 203 117 210 24
4 174 175 113 34 213 171 255 30 43 130 191 57 137 76 234
247 244 173 223 63 60 230 166 8 190 139 99 49 200 23 245
58 102 226 83 122 70 241 94 127 41 194 233 97 251 107 26
109 61 248 90 192 167 147 82 158 225 36 50 84 92 88 38
74 136 138 232 62 176 128 189 124 118 169 14 228 0 243 181
123 254 20 202 75 149 219 120 160 9 253 39 180 207 114 142
183 93 101 15 238 177 132 212 35 250 239 249 179 17 65 186
11 125 178 45 170 141 121 126 119 64 144 182 112 22 165 222
100 69 252 216 13 27 152 235 80 5 196 59 25 151 79 155
240 77 115 71 31 105 95 86 209 150 98 89 163 246 66 18
162 214 218 42 242 46 111 48 215 224 135 108 153 32 16 205

Table 12: The S-box SD
3299,1451 generated by the proposed method based on the

diffusion ordering

33 151 65 207 12 103 96 123 190 126 82 155 21 1 229 186
61 224 42 179 63 178 73 153 138 168 146 41 46 9 109 184
124 243 236 57 19 6 100 94 69 48 116 216 54 228 90 81
47 13 88 197 247 129 206 198 221 5 78 80 150 200 145 55
60 105 212 18 210 43 137 250 135 166 52 115 91 208 25 199
77 170 121 122 11 254 27 157 175 34 104 201 95 222 133 176
36 3 141 218 30 162 220 193 28 110 223 161 74 182 226 113
0 112 234 144 241 20 156 62 49 23 26 35 148 101 233 56
181 130 118 149 70 173 71 45 50 204 10 87 232 93 177 67
4 120 8 40 72 125 92 114 68 83 225 246 158 143 53 196
249 242 136 195 160 213 131 107 66 29 230 188 38 111 205 253
171 251 102 235 31 127 217 17 183 117 37 211 164 97 119 219
167 134 24 16 255 2 32 215 227 154 187 75 231 240 172 142
244 89 14 98 76 85 147 79 64 180 214 139 152 238 51 185
22 44 194 99 39 169 203 189 108 86 132 237 163 239 209 245
59 202 15 58 248 128 174 140 192 191 106 165 159 84 7 252
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Table 13: The S-box SM
4229,2422 generated by using the proposed method based

on the modulo diffusion ordering

15 13 247 249 167 183 179 173 101 204 105 210 214 205 199 19
164 38 85 72 98 90 113 12 239 217 165 228 123 195 26 216
207 30 182 219 14 215 232 135 241 145 17 244 223 114 29 70
104 81 71 99 191 128 227 86 172 185 5 75 197 184 109 248
162 250 25 110 125 230 129 35 102 234 54 171 194 16 33 73
155 246 154 84 149 134 238 18 240 67 200 253 61 31 170 180
55 20 224 187 10 147 92 133 196 242 146 27 34 140 28 192
63 127 143 203 137 2 74 193 65 4 124 51 107 24 42 122
103 22 41 226 235 252 116 212 77 49 48 201 148 221 251 80
229 115 93 139 181 52 97 119 189 166 21 45 53 100 32 131
112 94 59 142 117 36 153 254 66 158 79 121 8 130 132 60
245 231 126 152 151 89 0 39 160 136 37 78 236 56 206 157
222 174 82 69 6 83 220 3 57 111 208 47 141 87 168 176
11 118 169 58 243 120 150 91 190 23 178 44 7 43 177 76
161 144 163 68 88 138 218 108 159 186 40 237 175 46 198 96
202 9 62 50 64 233 255 209 188 1 106 225 95 213 156 211
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