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Abstract: While considering a mirror and light rays coming either from a point source or from infinity, the reflected
light rays may have an envelope, called a caustic curve. In this paper, we study developable surfaces as mirrors.
These caustic surfaces, described in a closed form, are also developable surfaces of the same type as the original
mirror surface. We provide efficient, algorithmic computation to find the caustic surface of each of the three types of
developable surfaces (cone, cylinder, and tangent surface of a spatial curve). We also provide a potential application
of the results in contemporary free-form architecture design.
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1 Introduction

When light rays are reflected from a curved mir-
ror, the following optical phenomenon may be ob-
served: the reflected light rays may possess an enve-
lope, called a caustic curve or surface. These caustics
can not only appear in our everyday experience, such
as on the surface of coffee in our coffee cup, but also
play an important role in the sciences, from physics
to computer graphics (Arnold et al., 1985; Lock and
Andrews, 1992). Scientists, from the ancient Greeks
through Huygens to contemporary opticians, engi-
neers, and geometers, have studied reflected and re-
fracted light rays from the theoretical point of view
as well as through various applications.

In recent years, these surfaces have been usually
described as parametric free-form surfaces, typically
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as Bézier or B-spline surfaces in various applications,
to provide more freedom for users in the interactive
design process (Tang et al., 2016). Optical stud-
ies frequently apply these free-form surfaces in lens
design (Liu P et al., 2012; Ponce-Hernández et al.,
2020) or light-emitting diode (LED) illumination re-
search (Wu et al., 2013).

In engineering and architecture, this problem is
especially relevant in terms of developable surfaces,
i.e., curved surfaces that can be unfolded to (and
therefore created from) a planar shape. There are ba-
sically three different types of developable surfaces.
Two of them are the well-known cone and cylinder,
while the third one is a more general type, namely,
the tangent surface of spatial curves. From the com-
putational point of view, this latter type is the most
challenging one in engineering applications, but at
the same time, this type provides much more freedom
in engineering design than the classical cones and
cylinders (Seguin et al., 2021). These surfaces are
used, among other applications, for creating special
developable mechanisms, e.g., for cylindrical (Green-
wood et al., 2019) and for conical (Hyatt et al., 2020).
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Non-developable surfaces are also frequently approx-
imated by developable ones, for instance, to ease
fabrication from sheet metal (Liu XH et al., 2016).
For an excellent overview of developable Bézier sur-
faces, readers can refer to Zhang and Wang (2006).
In this paper, we also follow this construction.

One of the most spectacularly evolving appli-
cation of developable surfaces can be found in ar-
chitecture, precisely, in the so-called free-form ar-
chitecture. Due to evident mechanical and material
restrictions, special attention has been paid to devel-
opable surfaces in this field (Pottmann et al., 2015;
Martín-Pastor, 2019).

The caustics of classical planar curves are well-
known and widely studied (Yates, 1947; Lockwood,
1967). In the case of surfaces, theoretical results are
also known. For a given surface, a somewhat similar
notion is the focal surface, i.e., the surface formed by
the centers of the curvature spheres. The relation-
ship between the focal and caustic surfaces has been
established (Pottmann and Wallner, 2000) and it has
been proven that the focal surface of a developable
surface will be developable of the same type as the
original one (Pottmann and Wallner, 2000). This re-
sult, in theory, yields the same consequence in terms
of caustic surfaces, but these theoretical outcomes
do not provide exact, constructive, and algorithmic
solutions to compute and display these surfaces in
practical applications. To calculate the caustics of
a given surface, numerical solutions have been pro-
vided (Schwartzburg et al., 2014).

Instead of numerical calculation, in this paper,
we provide the exact computation and closed formu-
lae for the caustics of developable surfaces. These
caustic surfaces are of utmost importance in contem-
porary architecture (Pottmann et al., 2015), where
caustics may appear, e.g., as an outcome of the re-
flected sunshine beams.

2 Developable surfaces as mirrors

As is well-known, considering the curve

r (t) =

⎡
⎣

rx (t)

ry (t)

rz (t)

⎤
⎦ (1)

and direction g(t), t ∈ [a, b], the surface

s (t, u) = r (t) + ug (t) , u ∈ R (2)

is a ruled one. The given curve is the directrix of
the surface, while for any fixed t0 ∈ [a, b], the lines
r (t0)+ug (t0) are called the generators (or rulings).
The surface is developable if the normals of the tan-
gent planes along the generators are of constant di-
rection; i.e., considering the partial derivatives

∂

∂t
s (t, u) = ṙ (t) + uġ (t) , (3)

∂

∂u
s (t, u) = g (t) , (4)

the normal vector

n (t, u) =
∂

∂t
s (t, u)× ∂

∂s
s (t, u)

= [ṙ (t) + uġ (t)]× g (t)

(5)

does not depend on u for any t. In other words,
the tangent planes of the surface along its generators
coincide.

Now let us consider a developable surface as a
mirror. Here, we assume that the light source is
point-like, either being at infinity or not, and that
none of the generators of the developable surface go
through the light source. For any generator r (t0) +
ug (t0) of the surface, incoming light rays meeting
the mirror surface along this generator are coplanar,
and due to the fixed tangent plane along the gener-
ator, the reflected light rays are also coplanar. The
plane of reflected light rays is to be computed first.
This plane is fully determined by the selected gen-
erator and one single reflected light ray. In the fol-
lowing subsections, the computations are presented
separately for the case when the light source is at
infinity (yielding parallel light rays) and for the case
when the source of light is a point of the affine space.

2.1 Light source at infinity

Without loss of generality of the forthcoming
computation, we can assume that the direction of
parallel light rays is d = [1 0 0]T. We further assume
that none of the generators are parallel to the given
direction. Let the selected generator of the surface
be r (t0) + ug (t0).

The direction d(t0) of the reflected rays can be
computed by reflecting d with respect to the tangent
plane along the selected generator with normal vec-
tor n (t0). Since the endpoint of d is on the unit
sphere,

x2 + y2 + z2 = 1, (6)
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the endpoint of the reflected ray d(t0) will also be
on this sphere. Thus, we have to compute the
intersection point of the unit sphere and the line:

d+ λn (t0) =

⎡
⎣

x

y

z

⎤
⎦ =

⎡
⎣

1

0

0

⎤
⎦+ λ

⎡
⎣

nx (t0)

ny (t0)

nz (t0)

⎤
⎦

=

⎡
⎣

1 + λnx (t0)

λny (t0)

λnz (t0)

⎤
⎦ ,

(7)
where λ ∈ R. Solving the equation

[1 + λnx (t0)]
2
+ [λny (t0)]

2
+ [λnz (t0)]

2
= 1, (8)

one can find

λ =
−2nx (t0)

n2
x (t0) + n2

y (t0) + n2
z (t0)

= − 2nx (t0)

‖n (t0)‖2
, if ‖n (t0)‖ �= 0.

(9)

Therefore, the direction of the reflected rays
along this generator is

d (t0) =

⎡
⎢⎢⎣

1− 2nx(t0)

‖n(t0)‖2nx (t0)

− 2nx(t0)

‖n(t0)‖2ny (t0)

− 2nx(t0)

‖n(t0)‖2nz (t0)

⎤
⎥⎥⎦

= d− 2nx (t0)

‖n (t0)‖2
n (t0) .

(10)

2.2 Light source at an affine point

Without loss of generality of the foregoing com-
putation, we can assume that the source of light is
at the origin of the coordinate system. We further
assume that none of the generators pass through this
point. Again, let the selected generator of the surface
be r (t0) + ug (t0).

As we have observed, light rays intersecting this
generator form a plane, and the reflected light rays
will also form a plane passing through this generator.
To determine this plane, it is enough to reflect one
single light ray, e.g., the one intersecting the directrix
curve r (t) at this generator. In other words, we
have to reflect the vector r (t0) (this is the direction
of a light ray coming from the origin, i.e., r (t0) =

d (t0)) with respect to the normal vector n (t0) of the
tangent plane.

The endpoint of r (t0) = d (t0) is on the sphere:

x2 + y2 + z2 = ‖r (t0)‖2 , (11)

and therefore the endpoint of the reflected vector
d (t0) also has to be on this sphere.

Thus, we have to compute the intersection point
of the line passing through r (t0) with the direction
vector n (t0), i.e., of the line

r (t0) + λn (t0) =

⎡
⎣

rx (t0)

ry (t0)

rz (t0)

⎤
⎦+ λ

⎡
⎣

nx (t0)

ny (t0)

nz (t0)

⎤
⎦

=

⎡
⎣

rx (t0) + λnx (t0)

ry (t0) + λny (t0)

rz (t0) + λnz (t0)

⎤
⎦

(12)
and sphere (11). Solving the equation

‖r (t0)‖2 = ‖r (t0) + λn (t0)‖2 , (13)

one obtains

λ =− 2nx (t0) rx (t0) + 2ny (t0) ry (t0)

n2
x (t0) + n2

y (t0) + n2
z (t0)

− 2nz (t0) rz (t0)

n2
x (t0) + n2

y (t0) + n2
z (t0)

=− 2r (t0) · n (t0)

‖n (t0)‖2
, if ‖n (t0)‖ �= 0.

(14)

The reflected vector is

d (t0) = r (t0)− 2r (t0) · n (t0)

‖n (t0)‖2
n (t0) , (15)

which, together with the selected generator, deter-
mines the plane of the reflected rays.

2.3 The family of planes of reflected rays and
their envelope surface

In the preceding subsections, we have computed
the vector d (t0), and this computation is necessary
for determining the plane of reflected rays at each
generator r (t0) + ug (t0) of the developable surface.
Forthcoming computations are independent of the
actual position of the light source.

The reflected rays form a one-parameter family
of planes:

P (u, v, t) = r (t) + ug (t) + vd (t) , (16)

where t ∈ [a, b] is the family parameter and u, v ∈
R. It is easy to see that the envelope surface of
this one-parameter family of reflected light planes is
also developable (Do Carmo, 2016). This envelope
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surface is the caustic surface of the original mirror
surface.

In what follows, we will determine this caustic
surface in the standard form of developable surfaces
analogous to Eq. (2), i.e., in the following form:

e (t, λ) = q (t) + λf (t) , t ∈ [a, b] , λ ∈ R, (17)

where q (t) is the curve and f (t) is the direction
of the generators passing through the points of this
curve. We apply the computations as

∂

∂u
P (u, v, t) = g (t) , (18)

∂

∂v
P (u, v, t) = d (t) , (19)

∂

∂t
P (u, v, t) = ṙ (t) + uġ (t) + vḋ (t) , (20)

and therefore we have

det
[

∂
∂uP (u, v, t) ∂

∂vP (u, v, t) ∂
∂tP (u, v, t)

]

=
[
g (t)× d (t)

] ·
[
ṙ (t) + uġ (t) + vḋ (t)

]
= 0,

(21)
from which we can obtain

[
g (t)× d (t)

] · ṙ (t) + [
g (t)× d (t)

] · uġ (t)
+
[
g (t)× d (t)

] · vḋ (t) = 0. (22)

The normal vector of the plane P (u, v, t) is

g (t)× d (t) , (23)

the derivative of which is

ġ (t)× d (t) + g (t)× ḋ (t) . (24)

The cross product of the normal vector (23) and
its derivative (24) is the direction of the generators
of the envelope surface passing through the points of
r (t). This direction can be computed as

f (t) =
[
g (t)× d (t)

]

×
[
ġ (t)× d (t) + g (t)× ḋ (t)

]

=
[
g (t)× d (t)

]× [
ġ (t)× d (t)

]

+
[
g (t)× d (t)

]×
[
g (t)× ḋ (t)

]
.

(25)

To simplify this expression, we apply the for-
mula of

a× (b× c) = (a · c)b− (a · b) c. (26)

Accordingly, the two terms on the right-hand
side of Eq. (25) can be written as

[
g (t)× d (t)

]× [
ġ (t)× d (t)

]

=
[(
g (t)× d (t)

) · d (t)
]
ġ (t)

− [(
g (t)× d (t)

) · ġ (t)]d (t)

=− [(
g (t)× d (t)

) · ġ (t)]d (t) ,

(27)

and [
g (t)× d (t)

]×
[
g (t)× ḋ (t)

]

=
[(
g (t)× d (t)

) · ḋ (t)
]
g (t)

− [(
g (t)× d (t)

) · g (t)] ḋ (t)

=
[(
g (t)× d (t)

) · ḋ (t)
]
g (t) .

(28)

Therefore, the direction of the generators of the
envelope surface can simply be written in the follow-
ing form:

f (t) =
[(
g (t)× d (t)

) · ḋ (t)
]
g (t)

− [(
g (t)× d (t)

) · ġ (t)
]
d (t) .

(29)

Now, if one can fix u and v in a way that determi-
nant (22) vanishes ∀t ∈ [a, b], then by substituting
these values of u and v into Eq. (16), we obtain a
curve (or a constant vector) q (t), based on which
the caustic envelope surface can be written in the
classic form of developable surfaces in Eq. (17).

3 Caustics of developable surfaces

As is well-known, there are three types of de-
velopable surfaces: (generalized) cone, (generalized)
cylinder, and the tangent surface of spatial curves. In
this section, we specify the general computations in
Section 2 to the three different types of developable
surfaces.

3.1 Cones as mirrors

Considering a cone as a mirror, defined by curve
r(t), apex p, and light rays with direction d(t), the
caustic surface, i.e., the envelope surface of the re-
flected light rays with direction d(t), is also a cone
(Pottmann and Wallner, 2000). Herein, we present
the exact computation of the caustic cone surface
and provide the solution in a closed form.

In the case of a conic mirror surface, the curve
r(t) of Eq. (2) is an arbitrary planar or spatial curve,
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while the generators can be written as

g (t) = p− r (t) , t ∈ [a, b] , (30)

where p, the apex of the cone, is an arbitrary point
out of curve r. The family of planes in Eq. (16) will
be of the specific form:

P (u, v, t) = r (t) + u (p− r (t)) + vd (t) , (31)

where t ∈ [a, b] and u, v ∈ R.
In this case, determinant (22) will be

[
(p− r (t))× d (t)

] · ṙ (t)
− [

(p− r (t))× d (t)
] · uṙ (t)

+
[
(p− r (t))× d (t)

] · vḋ (t)

=
[
(p− r (t))× d (t)

] · (1− u) ṙ (t)

+
[
(p− r (t))× d (t)

] · vḋ (t) ,

(32)

which vanishes ∀t ∈ [a, b] if u = 1 and v = 0. Sub-
stituting these parameter values into Eq. (31), we
obtain

P (u, v, t) = r (t) + p− r (t) = p. (33)

That is, the caustic envelope surface is also a cone
with apex p. The direction of the generators can be
written as

f (t) =
{ [

(p− r (t))× d (t)
] · ḋ (t)

}
(p− r (t))

+
{ [

(p− r (t))× d (t)
] · ṙ (t)

}
d (t) .

(34)
Based on the calculations above, the caustic en-

velope surface of the cone can be written as

e (t, λ) = p+ λf (t) , t ∈ [a, b] , λ ∈ R, (35)

where p is the apex and f (t) denotes the direction
of generators.

An example is shown in Fig. 1.

3.2 Cylinders as mirrors

Considering a cylinder as a mirror, defined by
curve r(t), direction a, and light rays with direction
d(t), it is known that the caustic surface, i.e., the en-
velope surface of the reflected light rays with direc-
tion d(t), is also a cylinder (Pottmann and Wallner,
2000). In this subsection, we present the computa-
tion of this caustic surface and provide a closed form
of it.

Fig. 1 The family of planes of reflected rays (in yellow)
and their envelope caustic surface (in orange) in the
case of a conic mirror (in blue) defined by a cubic
Bézier curve (in red)
The direction of the incoming light rays (in yellow) is shown.
References to color refer to the online version of this figure

If the mirror surface in Eq. (2) is a cylinder, then
curve r(t) is an arbitrary planar or spatial curve, and
the direction of the generators g(t) is constant, i.e.,

g (t) = a, t ∈ [a, b] , (36)

where a is a vector (not parallel to the plane of r

when r(t) is planar). The family of planes in Eq. (16)
of the reflected rays can be written as

P (u, v, t) = r (t) + ua+ vd (t) , t ∈ [a, b] , u, v ∈ R.

(37)
The direction of generators of the caustic enve-

lope surface will be

f (t) =a× d (t) · ḋ (t)a− [(
a× d (t)

) · 0]d (t)

=
(
a× d (t)

) · ḋ (t)a.
(38)

That is, f (t) is parallel to a, ∀t ∈ [a, b]. This means
that the caustic surface of a cylindrical mirror is also
a cylinder, and that the generators of these two cylin-
ders are parallel.

Determinant (22) becomes

0 =
(
a× d (t)

) · ṙ (t) + (
a× d (t)

) · u0
+
(
a× d (t)

) · vḋ (t)

=
(
a× d (t)

) · ṙ (t) + (
a× d (t)

) · vḋ (t) ,

(39)

from which one can express v as

− (
a× d (t)

) · ṙ (t) = (
a× d (t)

) · vḋ (t) , (40)

v = −
(
a× d (t)

) · ṙ (t)
(
a× d (t)

) · ḋ (t)
, (41)

if
(
a× d (t)

) · ḋ (t) �= 0.
Substituting the calculated v and u = 0 into

Eq. (22), it vanishes ∀t ∈ [a, b]. Substituting the
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same v and u = 0 into the family of planes in
Eq. (37), the following curve is obtained:

h (t) = r (t)−
(
a× d (t)

) · ṙ (t)
(
a× d (t)

) · ḋ (t)
d (t) . (42)

Based on the calculations presented above, the
caustic surface of the cylinder can be written as

e (t, λ) = h (t) + λa, t ∈ [a, b] , λ ∈ R. (43)

A cylindrical mirror and its caustic surface are
shown in Fig. 2.

Fig. 2 The family of planes of reflected rays (in yellow)
and their envelope caustic surface (in orange) in the
case of a cylindric mirror (in blue)
The direction of the incoming light rays (in yellow) is shown.
References to color refer to the online version of this figure

3.3 Tangent surface of a spatial curve as a
mirror

Considering a general tangent surface of a spa-
tial curve r(t) as a mirror and light rays with di-
rection d(t), the caustic surface, i.e., the envelope
surface of the reflected light rays with direction d(t),
has been proven to be a tangent surface (Pottmann
and Wallner, 2000), but the exact construction of this
surface is not known. Now, we present the computa-
tion of the caustic surface and provide the solution
in a closed form.

If the developable mirror surface in Eq. (2) is a
general tangent surface of a spatial curve, then r(t)

is an arbitrary spatial curve, while the direction of
the generators fulfills the relationship as

g (t) = ṙ (t) , t ∈ [a, b] . (44)

In this case, determinant (22) is of the form as

(
ṙ (t)× d (t)

) · ur̈ (t) + (
ṙ (t)× d (t)

) · vḋ (t) , (45)

and it vanishes ∀t ∈ [a, b] when u = v = 0. This im-
mediately yields the somewhat surprising fact that

the caustic envelope surface contains the original
curve r(t).

The normal vector of plane P (u, v, t) is

ṙ (t)× d (t) , (46)

while its derivative is

r̈ (t)× d (t) + ṙ (t)× ḋ (t) . (47)

In this case, the direction of the generators of
the caustic envelope surface can be written as

f (t) =
[(
ṙ (t)× d (t)

) · ḋ (t)
]
ṙ (t)

− [(
ṙ (t)× d (t)

) · r̈ (t)]d (t) ,
(48)

and the caustic envelope surface is of the form as

e (t, λ) = r (t) + λf (t) , t ∈ [a, b] , λ ∈ R. (49)

It is clear from this expression that the caustic
surface is a ruled one. However, our aim is to prove
that it is a developable surface, specifically, that it is
a tangent developable surface of a spatial curve.

To reach this aim, we have to find the curve of
regression, i.e., a curve c (t) , t ∈ [a, b], the tangents
of which are parallel to the directions f (t) of the
generators of the surface, ∀t ∈ [a, b].

Since each curve on the ruled surface in Eq. (49)
can be considered a functional translation of curve
r (t) along the rulings, we search for the curve c(t)

in the following form:

c (t) = r (t) + λ (t) f (t) , (50)

where the function λ (t) , t ∈ [a, b], is to be deter-
mined. Moreover, the derivative of this curve with
respect to t is

ċ (t) = ṙ (t) + λ̇ (t)f (t) + λ (t) ḟ (t) , (51)

which must be parallel to f (t); i.e., ċ (t) must be or-
thogonal to vectors (46) and (47). These conditions
yield the following system of equations:

ċ (t) · (ṙ (t)× d (t)
)
= 0, (52)

ċ (t) ·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)
= 0. (53)

From Eq. (52), we obtain the following equality:

0 =
(
ṙ (t) + λ̇ (t)f (t) + λ (t) ḟ (t)

)
· (ṙ (t)× d (t)

)

= λ (t) ḟ (t) · (ṙ (t)× d (t)
)
,

(54)
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and from Eq. (54), we obtain

0 =
(
ṙ (t) + λ̇ (t) f (t) + λ (t) ḟ (t)

)

·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)

= ṙ (t) ·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)

+ λ (t) ḟ (t) ·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)

= ṙ (t) · (r̈ (t)× d (t)
)
+ λ (t) ḟ (t)

·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)
,

(55)
which further yields

− ṙ (t) · (r̈ (t)× d (t)
)

= λ (t) ḟ (t) ·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)
.

(56)

Therefore,

λ (t) =
−ṙ (t) · (r̈ (t)× d (t)

)

ḟ (t) ·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

) , (57)

whenever

ḟ (t) ·
(
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

)
�= 0 (58)

holds. Here, we prove that this scalar product cannot
be equal to zero.

The first factor of the scalar product in inequal-
ity (58) is not vanishing, i.e., ḟ (t) �= 0, since the
generators of the surface are not parallel (it is not a
cylinder). Thus, ḟ (t) can be written in the following
form:

ḟ (t) =
d

dt

[(
ṙ (t)× d (t)

) · ḋ (t)
]
ṙ (t)

+
[(
ṙ (t)× d (t)

) · ḋ (t)
]
r̈ (t)

− d

dt

[(
ṙ (t)× d (t)

) · r̈ (t)]d (t)

− [(
ṙ (t)× d (t)

) · r̈ (t)] ḋ (t)

=
d

dt

[(
ṙ (t)× d (t)

) · ḋ (t)
]
ṙ (t)

− d

dt

[(
ṙ (t)× d (t)

) · r̈ (t)]d (t) (59)

+
[(
ṙ (t)× d (t)

) · ḋ (t)
]
r̈ (t)

− [(
ṙ (t)× d (t)

) · r̈ (t)] ḋ (t) . (60)

Since expression (59) is the linear combination
of ṙ (t) and d (t), this term is parallel to the plane

spanned by ṙ (t) and d (t), which is actually the plane
P (u, v, t).

Applying identity (26) to expression (60), one
can find

[(
ṙ (t)× d (t)

) · ḋ (t)
]
r̈ (t)

− [(
ṙ (t)× d (t)

) · r̈ (t)] ḋ (t)

=
[
ṙ (t)× d (t)

]×
[
r̈ (t)× ḋ (t)

]
.

(61)

However, this cross product is evidently orthog-
onal to one of its factors, i.e.,
(
ṙ (t)× d (t)

)×
(
r̈ (t)× ḋ (t)

)
⊥ (

ṙ (t)× d (t)
)
.

(62)
Therefore, expression (60) is also parallel to the
plane (orthogonal to the normal vector of the plane)
spanned by ṙ (t) and d (t), i.e., P (u, v, t). We ob-
tain that both terms of ḟ (t) (expressions (59) and
(60)) and ḟ (t) are parallel to the plane P (u, v, t)

and orthogonal to its normal vector, i.e., ḟ (t) ⊥(
ṙ (t)× d (t)

)
.

For the second factor of the scalar product in
inequality (58), the equality

r̈ (t)× d (t) + ṙ (t)× ḋ (t) =
d

dt
(ṙ (t)× d (t)) (63)

holds; therefore, this term describes the change of the
normal vector ṙ (t)× d (t) of the plane P (u, v, t).

As a consequence, the scalar product, i.e., the
left side of inequality (58), could be equal to zero
only if either the second factor, i.e., the derivative
of the normal vector ṙ (t) × d (t), is the null vec-
tor or the normal vector is parallel to its derivative.
Both would yield that the planes P (u, v, t) coincide
or that they are parallel ∀t; i.e., curve r (t) is a pla-
nar curve. However, this contradicts our assumption
that we are studying the tangent surfaces of spatial
curves.

Back to the system of Eqs. (52) and (53), we
have expressed λ (t) from Eq. (53), but this must
fulfill Eq. (52) as well.

In other words,

0 = λ (t) ḟ (t) · (ṙ (t)× d (t)
)

(64)

must hold. However, this equation indeed holds,
since we have just seen that ḟ (t) ⊥ (

ṙ (t)× d (t)
)
;

i.e., the scalar product above equals zero, ∀t.
Based on the computation presented above, the

caustic surface of a tangent surface can be computed
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as a tangent surface of the spatial curve c (t) = r (t)+

λ (t)f (t), where

f (t) =
[(
ṙ (t)× d (t)

) · ḋ (t)
]
ṙ (t)

− [(
ṙ (t)× d (t)

) · r̈ (t)]d (t)
(65)

and

λ (t) =
−ṙ (t) · (r̈ (t)× d (t)

)

ḟ (t) ·
[
r̈ (t)× d (t) + ṙ (t)× ḋ (t)

] . (66)

Examples of this type of mirror and its caustic
surface are shown in Figs. 3 and 4, respectively.

Fig. 3 The family of planes of reflected rays (in yellow)
and their envelope caustic surface (in orange) in the
case of a tangent surface of a spatial curve as a mirror
(in blue)
The direction of the incoming light rays (in yellow) is shown.
References to color refer to the online version of this figure

Fig. 4 The caustic surface (in orange) along with its
regression curve in the case of a tangent surface of a
spatial curve as a mirror (in blue) defined by a cubic
Bézier curve (in red)
The direction of the incoming light rays (in yellow) is shown.
References to color refer to the online version of this figure

4 An application: developable surfaces
in architecture

Developable surfaces, especially the tangent sur-
faces of a curve, are commonly used in modern archi-

tecture (Glaeser and Gruber, 2007; Pottmann et al.,
2015). If the surface of such a construction is made
from a reflective material (e.g., metal sheets at the
Guggenheim Museum in Bilbao), then the surface
may behave like a mirror. When a free-form build-
ing or a sculpture reflects light rays, some places
around the structure, where light rays are concen-
trated, can be of high temperature. This especially
holds around the cusp of the intersection curve of the
caustic surface of the building and the ground plane.
Our aim is to find those “hot” points of the ground
plane. Without loss of generality, we can assume
that this plane is the [x, y] plane.

The intersection of the caustic surface e (t, λ)

and the [x, y] plane is a curve, expressed as follows:

e (t, λ) ∩ [x, y] = ec(t). (67)

This curve can be described as

ec(t) = e (t, λ (t)) , (68)

where λ (t) is the solution to the equation e (t, λ) = 0

for parameter t. This curve usually has a cusp
e (t0, λ0), which can be very hot due to physical rea-
sons. Applying standard methods, in most cases, this
cusp cannot be directly computed exactly. Based on
our results, however, this cusp can simply be com-
puted as the intersection of the curve of regression
of the caustic surface and the [x, y] plane (Fig. 5), as
follows:

e (t0, λ0) = c (t) ∩ [x, y] . (69)

Fig. 5 The caustic surface (in orange) and its regres-
sion curve in the case of a tangent surface of a spatial
curve as a mirror (in blue) defined by a cubic Bézier
curve (in red)
The caustic surface intersects the [x, y] plane in the curve
eeec(t) (in green). The curve of regression hits the [x, y] plane
in the cusp of the curve eeec(t). The direction of the incoming
light rays (in yellow) is shown. References to color refer to
the online version of this figure
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5 Conclusions

The caustics of developable surfaces have been
studied in this paper. In the theory of developable
surfaces, it is known that the caustics of each of the
three different types of developable surfaces are de-
velopable surfaces of the same type. These caus-
tic surfaces have been expressed in an exact, closed
form. In the case of the tangent surface of a spatial
curve, the curve of regression of the caustic surface
has also been computed. This curve has been applied
in a practical computation of finding the cusp of the
intersection curve of a caustic surface and a plane,
which may appear in applications such as free-form
architecture.
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