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Abstract The applications of the continuous feedback
method to achieve both path following and a forma-
tion moving along desired orbits at a finite time is
presented. It is assumed that the topology among the
virtual leader and the followers is directed. An addi-
tional condition of so called barrier function to yield all
the agents moving within a limited area is designed. A
novel continuous finite-time path following control law
is first designed based on the barrier function and back-
stepping. Then a novel continuous finite-time formation
algorithm is designed by regarding the path following
errors as disturbances. The settling time properties of
the resulting system are studied in detail. Simulations
are presented to validate the proposed strategies.

Keywords Finite-time coordinated control - multi-
agent systems
1 Introduction

Currently the theory of formation control problem
has emerged as a hot spot and attracted great
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attention of researchers. To achieve better perfor-
mance in seeking measurements of biological vari-
ables across a range of spatial and temporal scales
in the applications of oceanic and planetary explo-
rations [Bertozzi et al., 2005, Fiorelli et al., 2006], un-
manned systems are required to simultaneous follow a
set of given orbits with a desired formation, which is a
special formation control problem named as the coordi-
nated path following control problem.

In the area of the coordinated path following con-
trol most results focus on the asymptotic stability of
the resulting multi-agent systems. In [Cao et al., 2009]
a discrete-time consensus-based algorithm is developed
to force each follower tracking a leader with the de-
sired dynamics, which is also called as the consen-
sus tracking control problem. The continuous-time con-
sensus tracking control laws are given in the cases
of the time-invariant formation in [Cao & Ren, 2012],
the time-varying formation in [Yu et al., 2018] and
the containment motion in [Zhang & Chen, 2020]. In
[Ghabcheloo, 2007] a coordinated path following con-
trol law is designed by parameterizing the desired tra-
jectories and at the same time synchronizing the or-
bital parameters. Such idea is used in the case of un-
certain dynamics in [Peng et al., 2013]. Noting that
the geometry of the orbit, a novel geometry exten-
sion method is proposed and then intergraded into the
consensus of the generalized arc-lengths (that is the
smooth functions of arc-length) to achieve the coordi-
nated path following task in [Zhang & Leonard, 2007,
Chen & Tian, 2015]. The geometry extension method
is also used to solve the asymptotic coordinated
path following problem with the time-varying flows in
[Chen et al., 2020,Chen et al., 2020]. However, the co-
ordinated path following control problem within a finite
settling time is still unsolved yet.



Weibin Chen, Yang-Yang Chen

Recently, the finite-time control laws in the
multi-agent systems concentrates on the consensus
or consensus tracking problems. In [Xiao et al., 2009]
a finite-time consensus tracking law is designed
for the structure consisting with one leader and
bidirectional connected followers based on the
sliding-mode method. The sliding-mode method
can be used in the cases of directed topologies in
[Cao et al., 2010, Wang & Xiao, 2010],  uncertainties
in [Khoo et al., 2009] and under-actuated systems in
[Li et al., 2018]. By integrating into the saturation,
the sliding-mode-based finite-time consensus tracking
system can analyzed by using the degree of homo-
geneity. The details can be found in [Gu et al., 2012,
Dou et al., 2019]. It is noted that the above control
laws are non-smooth and thus sometimes they can
not be directly used in the actual continuous systems
[Qian & Lin, 2001]. There is a trend to design the
continuous finite-time controller for the coordinated
control problem. In [Li et al., 2011] a continuous
finite-time consensus law is designed for second-order
multiagent systems under one leader and bidirec-
tional connected followers. A similar idea is used
in [Du et al., 2013] by dynamic output feedback. In
[Huang et al., 2015] an adaptive finite-time consen-
sus algorithm is designed for uncertain nonlinear
mechanical systems. Simultaneously the continuous
finite-time consensus method can be developed to
deal with high-order nonholonomic mobile robots with
bidirectional topologies in [Du et al., 2017] and surface
vehicles under the assumption that all the follower can
access to the leader in [Wang & Li, 2020]. Note that
the objectives of coordinated path following control
problem include path following and formation, which
is different from the consensus problem. It is essential
to give a finite-time method to the coordinated path
following problem.

This paper gives a continuous solution to the finite-
time control problem of coordinated path following un-
der directed topologies. In order to solve the trajectory
restriction problem, a new definition of barrier function
is given, which is integrated into backstepping to de-
sign a novel continuous finite-time path following con-
trol input projected on the normal vector on the or-
bit. Another continuous finite-time formation control
input projected on the tangential vector on the orbit
is designed by regarding the path following errors as
disturbances. It is noted that the proposed method
in this paper is different from our previous adaptive
method in [Chen et al., 2020] in the conditions: 1) Di-
rected networked second-order agents are under consid-
eration and replace the first-order systems with bidi-

rectional topologies; 2) A continuous finite-time design
method is used to replace the adaptive methods.

The paper has the following outline. Section 2 pro-
vides some preliminaries and formulates the finite-time
coordinated path following control problem. In Section
3 we first give a continuous finite-time control law to
the path following subsystem and then the formation
subsystem. Simulation results are presented in Section
4. Conclusions are given in Section 5.

2 Preliminaries and problem formulation

The network topology of the coordinated path follow-
ing system can be described by a digraph G = {V, £},
where the nodes V = {Vy,---,V,} are associated to a
virtual leader labeled by V, and n vehicles labeled by
{V1,-+,Vn}, respectively, and € C V x V is a set of
network links. A directed path from node V; to V; is a
sequence of edges (V;, Vi), (Vi,, Vio), .-+, (Vil—13vil)7
(Vi,,V;) in the network topology with distinct nodes
Vi.,k = 0,...,0. A digraph is called a directed tree
if there exists a node, called the root, that has di-
rected paths to all other nodes in the digraph. Let, for
1,7 = 0,...,n, a;; = 0, ajj = 1 if (Vj,Vi) € &, and
a;; = 0 otherwise. In addition define the Laplacian ma-
trix L £ [lij]?,j:o with l” = Z?:l A4 and lij = —aj,
for any i # j, i,7 = 0,...,n. Let R denotes the set
of real numbers, R™*™ denotes the sets of n x m real
matrices and 0 denotes the zero matrix of appropriate
dimension. For the considered coordinated path follow-
ing system the Laplacian matrix L can be written as
00

v=los)

where Iy = [l10, -+ ,ln0]T and L; € R™ ™. Suppose
that Assumption 1 holds. L; is a nonsingular M-
matriz and all eigenvalues of L have positive real parts
[Zhang & Tian, 2009).

Assumption 1. The digraph consisting of a virtual
leader and n vehicles contains a directed spanning tree
with root V.

To solve the trajectory restriction problem in the ge-
ometry extension method a new definition of the barrier
function ¥; is given.

Definition 1. A C? function ¥; : (—¢;,¢;) — Risa
barrier function with barrier 2¢; > 0 if

Cl) lim ¥ (\)=+ocand lim V¥ ())=—oo.
Xi——ef Xi——ef

C2) lim ¥; (\;) =+4ooand lim V¥; (\;) =400
Xi—e; Xi—e;
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Remark 1. (C4) is an additional condition in con-
trast with ¥; in [Chen & Tian, 2015, Chen et al., 2020].

2.1 Problem formulation

In a fixed inertial reference frame the model of the vir-
tual leader under Assumption 2 is the first-order dy-
namics such that po = 0, where py = [Py, pyO]T € R?is
its position. Let i = 1, --- ,n. The dynamic equation for
the ith follower satisfying the second-order dynamics is
given by

Di = v,
f)i = U4, (1)

where p; = [p%.,pyi]T € R? and v; = [vwi,vyi]T € R?
denotes the position and velocity variables, respectively.
i = [tg,, uy,]" € R? denotes the control input.

Assumption 2. The virtual leader is stationary,
that is the position of the virtual leader is fixed on a
virtual orbit.

Suppose that the desired orbit associated to each
agent is a simple, closed and regular curve with nonzero
curvature. In [Chen & Tian, 2015] such curve can be
geometry extended to be a set of level curves, in which
can be defined by a smooth function (that is the orbit
function) \; : £2; — (—&;,¢;) and the desired orbit can
be defined by \;(p;) = 0, where £2; C R? is an open set
and p € R2. Let the arc-lengthes are given by

% 9s; (M
i (N, 04) é/ %
b T

where ¢} is the parameter associated with the starting
point of the arc of s;. The generalized arc-lengthes &; :
R — R, the functions of the arc-lengths s; such that
0¢;/0s; is a constant and ce < |0¢;/0s;| < cg with two
positive constants ce and cg, are used to describe the
formation along the curves.

Finite-time coordinated path following con-
trol problem. Let ¢ € [1,n]. Consider the system (1)
and the initial position p;(0) € §2;. Suppose Assump-
tions 1 and 2 hold. Design a finite-time coordinated
path following control u; such that
lim A (p;(t)) = 0 (3)

t—T

dr, (2)

with a finite time T' > 0, p;(¢) € (2;, for all ¢ > 0, where

Qi = {pi € R?| |\ (pi(1)| < &}, (4)
and
lim &, (£) = &(0). (5)

t—T

Remark 2. This paper devotes to designing a finite-
time control law for directed networking second-order
agents for the coordinated path following problem.
However, [Chen et al., 2020] deals with the adaptive de-
sign for first-order agents with unknown time-varying
parameters and bidirectional topologies.

3 Main results
3.1 Open-loop system

The path following dynamics by differentiating \; is

Ai = VAl ow, (6)
where vy, = NIv; denotes the velocity projected on
the normal vector N; = % on the level orbit of

the current position of the vehicle. Differentiating both
sides of vy, yields

ON, = un, + An;,, (7)
where uy, = Nu; denotes the control input pro-
jected on the normal vector N;, Ay, = viTNi and
N, — V2Nivi N, NIV2N v,

IV TVl

Differentiating (2) one has $; = v, + gf\f

VA || UNy»
where vy, = T''v; denotes the velocity projected on the
tangent vector T; = [Ry, Rz]TN; to the level orbit of
the current position of the vehicle with Ry = [0,1]7
and Ry = [~1,0]T. Then the dynamics of ¢; is given by

b= 2ohur, + A, Q
where A, = gg 951 |V ;|| vw,. Differentiating both

sides of vy, yields
/DTi =ur, + ATN (9)

where ur, = TF u; denotes the control input projected
on the tangent vector N; and Ap, = viT RN;.
n
Let ¢; = ) ai; (& —&;) denote the formation er-
j=0

rors. The dynamics of ¢; is described by the equation

R 9&i %,
i = Zaij (ai_vn + 4, - 82”% - Aﬁj)' (10)
=0 !

As a result, the equations of the formation tracking
control system are given by (6), (7), (9) and (10).
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3.2 Controller design

Let us first consider the path following subsystem con-
sisting of (6) and (7) and the virtual control 9y, be

N, = —k1 (V) (11)

where the control gain k; will be selected later. Consider
the candidate Lyapunov function

n n uN;, /e
VP=Z@+712/@N (r* —o3) Vr.  (12)
=1 =1 i

where v = W The first term in (12) con-
tributes to achieving the path following objective, i.e.,
the equations (3) and (4). The second term contributes
to guaranteeing the convergence of the differences vy, =
vy, — 0, . Differentiating both sides of (12) along the
trajectories of (6), (7) and (11) yields

Ve ==Yk [[VAl| VT 30w [V o,

1=1 =1
n n
T > (0% = 0%) T (uw, + An) Y Pk
i=1 1=1

< =Y RV VI L STV [V,

i=1 i=1

n
+y ) (vf, —0%,)
i=1

2-1/a (un, + An,) + fp,  (13)

where
1 aﬁ?\é"@ o a coq \1-1/a
f)\i:_k%Jra O\ on, (T _vNi) dr
—1vr2 b « Lo \1-1/a
=k 'V, (T* = o%,) dr,
N,

fo =Y kYN (o8, - o)
=1

X ’UNiVQWi (’UNi - @Ni)

)

’DN,; = UN; — 61\77‘,
According to
= |(o8) " = (o)

and Lemmas A.1 and A.2 in [Qian & Lin, 2001] we have
that

1/

[on, < 2R, — R

Vi, | < 27V v o, — 6% |

)1+1/Oé

< (V)T ey, (v, — 0, . (14)

-1
Note that

b

|on: (vw, = )| < (ow, = @Ni)Q + [on, | [vw, — On,

(UNi - @N1)2 < 22—2/@ (/UJC\K/} - @J%i)Q/a’

o, | [on, — B, | < Ra272 (9 [V o — 0% ],
« N ]./Oé 1+1/a
v Y e — 6% | < vy,
| | |UN1 UN, | = 1+1/a¢2| |
1 —1/a | « Ao |1+1/a
+ m% |UNi — Uy,
= [V Y e, 0% — 0% [T, (1)

1/«

where ¢y, = 1750, ' and ¢2 = 1+ a. We conclude

that

fP < Zkfl ”)\Z” ‘VQWZ’ (22_2/(1(1)%1. . @%)1“1’1/&

=1
hi2! e <|VW1'|1+1/Q + g, [0R, — OR, ’Hl/a)) '
(16)

On the set @p = {(\;, On;,) [VF < cp }, for some cp > 0,
one has

ey <V < ey, |V2Wi| < cye2 (17)

with some ¢y > 0, ¢5 > 0 and cg2 > 0. Exploiting the
inequalities (14), (16) and (17) we conclude that

VP S - Z (klci - C;\ — Cx2171/a0g,2> (V';pi)1+1/a

=1

n
+ > en (g, —o%,)
=1

. a ~a \2—1/a
+m Z (UNi - vNi) / (uNi + ANl) ’ (18)
i=1
which yields
« Ao\ 142
un, = —An, — k;g(vNi — UN,-) * /a,
ky >ct (c;\ + ot Yy, 4+ Bm) ,
ky > (2 —1/a) ki ¢y, (19)
where cCN = CS\ (%1 +k;122_2/a0¢2 +21_1/QC¢2CQ/2)

and f3,, is an arbitrary positive constant. Note that

(vwz)l—‘rl/a_'_ (’U?\‘/v _i\}?\é[)l"rl/a

i i

(14+1/a)/2

> ((wi)2 + (v%,
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Suppose that Vp(t) # 0. Substituting (19) into (18)
yields

n

. o)
Vp < *ﬂpl Z ((Vkpl)z + (UNi - UNi) )
i=1
_ 7ng1g1+1/a)/2, (21)
where gp = [, Vp S (r1/e)/2 > ((V!I/) (v,

o\ (1+1/a)/2

*"A’N,-) . By equation (19) the closed-loop

equations associated to the path following subsystem
for the ith follower are

i = =k VALV + IV B,
N, = kg (0%, — 0%.)° " = 6. (22)

Remark 3. It is obvious that the closed-loop sys-
tem (22) for path following is not homogeneous. There-
fore, the finite-time stability analysis method given
in [Gu et al., 2012,Dou et al., 2019] can not applied in
this paper.

Note that 0 < (14 1/a)/2 < 1. To apply Theorem
4.2 in [Bhat & Bernstein, 2000] we will show that gp
has lower bound. From (C4) we have that

Ai
v, :/ Y, (1)dr < ¢ [V, + [V,
10

vNi _ a
/ (Ta — 17]&\,@)2 Ve g < 2171/°‘|U1°\‘,i — f}j'\‘,l|2 (23)
@N'L

with ’l/)io = d)z ()\10) and )\iO = )\1 (0), which yields

n

Ve < By Y | (V)

i=1

(08 =) e (24)

n
o 1 21 1/ o
where j3,, = max {Cw B LaRTFE | G = 121 |V,|e;

and f3p, is positive and bounded. As a result,

gp 2
n (14+1/a)/2
o 5 (507 5.~ 8
n 5 5 (1+1/a)/2
<ﬁp3 > (Ve + (g, —9%,)°) + )

> Bp,- (25)

According the Theorem 4.2 in [Bhat & Bernstein, 2000]
we establish the following theorem.

Theorem 1 Suppose that the initial positions of vehi-
cles are such that p;(0) € §2;. Assume moreover that
Assumption 2 holds. Then the path following objectives
(3) and (4) can be achieved by the finite-time control
up, gwen in (19) fori=1,---,n

Proof: From (21) we conclude that the function Vp
is bounded all the time, which implies the objective (4)
is satisfied according to (C1) and (C2). From (21) and
(25) we conclude that A\; = 0 and oy, are the finite-
time-stable equilibria of the closed-loop path following
equations (22). B

In the following we will consider the formation sub-
system consisting of (9) and (10). Let the virtual control
@T,i be

A 6\ e
T, = (8§z> k3§i1/ ) (26)

where k3 is a positive control gain and will be selected
later. Consider the candidate Lyapunov function

3ydeny [T

)M, (27)

where v9 = the first term con-
Y

W. In (27
tributes to achieving the formation objective, i.e., the
equation (5). The second term contributes to guaran-
teeing the convergence of the differences vy, = v, —9F. .
Differentiating both sides of (27) along the trajectories

of (9), (10) and (26) yields
Vi = —k3 ZCi Zaij (Cil/a - §j1/a) + fr
i=1  j=0
+ 72 Z (UN —
i=1

(28)

where U1, = vy, — 07,

fF - Zgz Zaz_] (agl ~T,l - g?ﬁT) (29)
Si J

=1 7=0
Z%Zaw (4¢ - 4. (30)
=1 =
A a
gw_@zgg z/ 0 )i tag,

X Z @ij ( “UT; Afi - aifjvTa AE;‘) : (31)
]

Note that
n n
fr <Yl | nee lon ] +y2ce Y |on| ] (32)
i=1 =0



Weibin Chen, Yang-Yang Chen

n
where 3 = maxy; {Zj:o aij} and 4 = maxv; ; {a;;}-

Lemmas A.1 and A.2 in [Qian & Lin, 2001] yield

= [(vg) "~ (05,) 7| < 22V g, — 05,
- ~ 1+1
il lor,| < I MHY 4 e v, — o,
141/
l6il |9, | < Il + ey |08, — 0%, , (33)
where cp, = 21_1/"‘n1_1/0‘ﬁ¢;ﬁ and ¢p, = (2171

nl=1/@ 2 )=1  Qubstituting equations (33) into (32)

1+«
yields
n n 141/
1+1 .
fr<eq Do lal ™ ben Dot — i, (34)
i=1 =0
where ¢, = 3¢z + yacg and ¢y, = Y3CEcR, +
VACENCF, CF, - Note that
9F < 9p,, + 9py,; (35)
where
_ o \1-1/ R
9F = Zki’)l 706 T; _v%;) : ‘UTi - Ur
n
agz agj
Xzaij Ds, Ti—afsj Ty |
j=1
" 1-1/
— N — (03 A
Ip = ) k3 e (v, —02,) |vr, — or,
=1
x Zaw - A, (36)
Due to the fact that
N2 . .
< (vg, = 0g,)" + |og,| v, = Og, |
< ka2 T a7 o, — o[
. R C1al— 1
‘UTj’ v, — g, | < k30§121 e |<j|1/a |vF, — 0, | /a
. N2 .
vy, = og,| < (vg, = 0p,)" + [og, ] og,
S 2272/a(v% 47@%)2/a
+ ]{3305_12171/& |§Z_|1/O¢ |v%i . 'ﬁ%t l/a’
A < 2272/(1 a  ao _ sa 1/a
|UTj’ |UT1: Ut | = U UTj |vTi T;
+ k:30£121_1/a |§j‘1/a ‘U% _ 'f)% 1/047
(37)
from (36), one has
= 1-1/
— — A — [e3%
9Fy, < Z k3 lcéa(v% - ’U%‘) 9Fa3; <38>

where
—2/a(, o a2/
Jras = M1CE (22 2 (v, —03,)”
+k3c£121—1/a |§i|1/a ”U% o ﬁTi‘l/a)
(220l 0 aa | o 1/
—|—’ygc§Z 2 vy, — U7, |’UT—UT1_|
=0
— -1/« ol o aa |1/
g 217V g7 g, — 03] (39)

From Lemmas A.1 and A.2 in [Qian & Lin, 2001] we
have

o 141
|§i|1/a ‘U%_ . 141/ + CF2|U%_ _ vTi’ + /a7
. o 141
1 o, — 98] < Il e fof, — 03],
N 1/a N o 1+1/«
Ur, — ’UT |UT,1 — Uty
141
+ cp, v, — 0| /e (40)

-1
: _nl-1l/a_« - _ 1-1/a 1
with cp, =n / 1_Ta¢FQ and ¢p, = (n / H—a) ,

which yields

ZCFI i)l 1/agF23

n
Ao\ 11/«
— vTi) / + Cg, Z |§i|1+1/aa (41)

i—1 i=1
where

21 1/«

Copy = kg_lcgafygchQ*Q/a + C& 'ylcg CF,

+ k;lcga740522_2/acF2n + cg - 740521_1/O‘CF27L

and

Cey = cgafl'ygcgﬂl_l/a + kglcga'y4c§22_2/an.

From (35), (38) and (41) we conclude that

n
a ao \1+H1/ 1+1/c
9r, < Cora Y (v, —08) +eo Y Ll
i=1 i=1

+ 9r,,-

Substituting the above equation and (34) into (28)
yields

Ve < —ks i%‘ iaij (%1/(1 -

i=1 j=0

n n
X Z |§¢|1+1/a + 72 Z (i
i=1 i=1
n

141/
+ (C'UTl + C'UTQ) Z ('U%, - UTl) + ary + 9Fsy»
7=0

gjl/a) + (g +cg)

N 2—1/«
- U?V/L-) / (uTi + ATI)

(42)
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in which makes the choices such that

— ka (v, —05,) 7 (43)

where the control gain k4 is set later. As a result, the
closed-loop formation subsystem for the ¢th follower is

G=—ks Y ay (gz-l/" — §j1/a> +)ay (Aa - Aﬁj)
=0 =0
- 0 o 0¢; .
T, = —k:4(

Substituting —kss? Lig/® < —kspr,
and (43) into (42) yields

n
1+1
—Cq — C(z) Z |§i‘ fo - (_C'UTI

ur, = —Ar,

S R (44)

1 & 141
Tt 3 e
1=

Vie < — (kspr,n

n

+k4’72 - C7JT2) Z (/U%l - UT1)1+1/
=1

+9m + )N

which makes the choices of the control gains as follows:
ks > pzlln (C<1 +cg, + 6F1) ’
ky > (2 - 1/04) k?l>+a (CUTl + Copy + BF&) ) (45)

where Sp, is an arbitrary positive constant. As a result,

n
Ve < —Br > o' =

n

Z 1+1/(x

i=1 =1
+9R +gF22. (46)
1-1/a
Let lF:maX{ ,W}.Then
n 2171/04 9
VAR D [ RS " Y ]
F—; |: 271/0&)]4731)4_0‘ T; Tz)

n
<tpd [+ (o8, - 5)°), (47)
i=1
. . 1+1/a)/2 1+1/a)/2 o
which yields Vé /2 < Z%Jr /e (Z gltt/oy
> (v% —@%L_)Hl/a) . Suppose that Vg(t) # 0. Equa-
i=1
tion (46) can be rewritten as

Vr < _5F2V1§}+1/a)/2 + gr;, (48)

where

Br, z i + By z (v,
(102 (Z (1/a 4 Z (v,

g _ gFl + gF22
Fs = T +1/a)/2°
Vop' /¢

Dueto 0 < (1+1/a)/2 < 1, BF, has lower bound. Also
gr, disappears as lim;_,7 A;(t) = 0 and lim;_,7 Oy, (t) =
0 as proven in Theorem 1. We give the following result
directly.

Theorem 2 Suppose that the initial positions of vehi-
cles are such that p;(0) € (2;. Assume moreover that
Assumptions 1 and 2 hold. Then the formation objec-
tive (5) can be achieved by the finite-time control ur,
given in (43) fori=1,---,n

Proof: The proof follows the same argument as
the proof of Theorem 5.3 in [Bhat & Bernstein, 2000],
hence it is omitted. B

Theorems 1 and 2 yield the following result.

Theorem 3 Suppose that the initial positions of ve-
hicles are such that p;(0) € (2;. Assume moreover
that Assumptions 1 and 2 hold. For i = 1,--- ,n, the
finite-time coordinated path following control problem is
solved by the coordinated path following control

NZT ! UN;

where un, and ur, are as given in the equations (19)
and (43), respectively.

Remark 4. In this paper, we first give a new bar-
rier function with an additional condition (C4) on page
3. Then a novel continuous finite-time path follow-
ing control law is designed based on the barrier func-
tion and backstepping. Simultaneously, a novel contin-
uous finite-time formation algorithm is designed by re-
garding the path following errors as disturbances. In
[Chen et al., 2020], a so-called congelation of variables
method is used to design the adaptive updated law for
unknown time-varying parameters, and at the same
time the coordinated path following law is designed
based on a unified Lynapunov function.

Remark 5. The settling time properties of the
resulting system are studied according to the finite-
time stability theory in this paper, which is different
from the asymptotic properties of the resulting adap-
tive system by using the Lynapunov stability theory in
[Chen et al., 2020].

4 Simulation

The desired formation is a triangle pattern with a
digraph as shown in Figure 1. The selected trajec-
tories for the agents are concentric ellipses with dif-
ferent semi-major axis and semi-minor axis, that is
Cio : p3,/(e1a)® +pZ, /(e1b)® = 1, where e; = 1 + 0.5,
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a=3,b=2,1=0,1,2,3,4. The parameters are se-
lected as k1 = k3 = 2.7, ke = ky = 34 and o = 9/7.
The initial generalized arc-length of the virtual leader
is £(0) = 0. The motion of the agents is illustrated in
Figure 2, where o, [J, % and + denote the agents’ posi-
tionsatt =0,t =1,¢t =2 and t = 7, respectively. From
this figure one can see that the four agents converge to
the given orbits and form the desired formation. The
time histories of the path following errors \; and of the
formation errors & — &y are plotted in Figures 3 and
4, respectively. From above figures we show that path
following and formation tracking are achieved.

1z
ld y
Y @ y

Fig. 1 The leader-following topology.

Fig. 2 The motion of the agents.

5 Conclusion

A continuous feedback method to solve the finite-time
coordinated path following control problem has been
presented, where the topology among the virtual leader
and follows is directed. Since the restriction of the mov-
able ranges of the agents, a novel barrier function is
given. The finite-time path following control law and

0 002 0.04 0.06 0.08 0.1
Fig. 3 Path following errors.
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Fig. 4 Formation errors.

the finite-time formation control law are designed, re-
spectively. Conditions on the control gains to guarantee
that the path following errors and the formation errors
finite-time converge to zeros are presented.
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