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Abstract The applications of the continuous feedback
method to achieve both path following and a forma-

tion moving along desired orbits at a finite time is
presented. It is assumed that the topology among the
virtual leader and the followers is directed. An addi-

tional condition of so called barrier function to yield all

the agents moving within a limited area is designed. A

novel continuous finite-time path following control law

is first designed based on the barrier function and back-

stepping. Then a novel continuous finite-time formation
algorithm is designed by regarding the path following
errors as disturbances. The settling time properties of

the resulting system are studied in detail. Simulations

are presented to validate the proposed strategies.

Keywords Finite-time coordinated control · multi-

agent systems

1 Introduction

Currently the theory of formation control problem

has emerged as a hot spot and attracted great
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attention of researchers. To achieve better perfor-

mance in seeking measurements of biological vari-

ables across a range of spatial and temporal scales

in the applications of oceanic and planetary explo-

rations [Bertozzi et al., 2005,Fiorelli et al., 2006], un-

manned systems are required to simultaneous follow a

set of given orbits with a desired formation, which is a

special formation control problem named as the coordi-

nated path following control problem.

In the area of the coordinated path following con-

trol most results focus on the asymptotic stability of

the resulting multi-agent systems. In [Cao et al., 2009]

a discrete-time consensus-based algorithm is developed

to force each follower tracking a leader with the de-

sired dynamics, which is also called as the consen-

sus tracking control problem. The continuous-time con-
sensus tracking control laws are given in the cases

of the time-invariant formation in [Cao & Ren, 2012],
the time-varying formation in [Yu et al., 2018] and

the containment motion in [Zhang & Chen, 2020]. In
[Ghabcheloo, 2007] a coordinated path following con-

trol law is designed by parameterizing the desired tra-

jectories and at the same time synchronizing the or-

bital parameters. Such idea is used in the case of un-

certain dynamics in [Peng et al., 2013]. Noting that
the geometry of the orbit, a novel geometry exten-

sion method is proposed and then intergraded into the

consensus of the generalized arc-lengths (that is the

smooth functions of arc-length) to achieve the coordi-

nated path following task in [Zhang & Leonard, 2007,

Chen & Tian, 2015]. The geometry extension method

is also used to solve the asymptotic coordinated

path following problem with the time-varying flows in

[Chen et al., 2020,Chen et al., 2020]. However, the co-

ordinated path following control problem within a finite

settling time is still unsolved yet.
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Recently, the finite-time control laws in the

multi-agent systems concentrates on the consensus
or consensus tracking problems. In [Xiao et al., 2009]

a finite-time consensus tracking law is designed

for the structure consisting with one leader and

bidirectional connected followers based on the

sliding-mode method. The sliding-mode method

can be used in the cases of directed topologies in
[Cao et al., 2010,Wang & Xiao, 2010], uncertainties

in [Khoo et al., 2009] and under-actuated systems in

[Li et al., 2018]. By integrating into the saturation,

the sliding-mode-based finite-time consensus tracking
system can analyzed by using the degree of homo-
geneity. The details can be found in [Gu et al., 2012,

Dou et al., 2019]. It is noted that the above control

laws are non-smooth and thus sometimes they can
not be directly used in the actual continuous systems

[Qian & Lin, 2001]. There is a trend to design the

continuous finite-time controller for the coordinated

control problem. In [Li et al., 2011] a continuous

finite-time consensus law is designed for second-order

multiagent systems under one leader and bidirec-

tional connected followers. A similar idea is used

in [Du et al., 2013] by dynamic output feedback. In

[Huang et al., 2015] an adaptive finite-time consen-

sus algorithm is designed for uncertain nonlinear

mechanical systems. Simultaneously the continuous

finite-time consensus method can be developed to
deal with high-order nonholonomic mobile robots with
bidirectional topologies in [Du et al., 2017] and surface

vehicles under the assumption that all the follower can

access to the leader in [Wang & Li, 2020]. Note that

the objectives of coordinated path following control
problem include path following and formation, which

is different from the consensus problem. It is essential
to give a finite-time method to the coordinated path
following problem.

This paper gives a continuous solution to the finite-
time control problem of coordinated path following un-
der directed topologies. In order to solve the trajectory

restriction problem, a new definition of barrier function

is given, which is integrated into backstepping to de-

sign a novel continuous finite-time path following con-

trol input projected on the normal vector on the or-

bit. Another continuous finite-time formation control
input projected on the tangential vector on the orbit
is designed by regarding the path following errors as

disturbances. It is noted that the proposed method

in this paper is different from our previous adaptive

method in [Chen et al., 2020] in the conditions: 1) Di-
rected networked second-order agents are under consid-

eration and replace the first-order systems with bidi-

rectional topologies; 2) A continuous finite-time design

method is used to replace the adaptive methods.

The paper has the following outline. Section 2 pro-
vides some preliminaries and formulates the finite-time

coordinated path following control problem. In Section

3 we first give a continuous finite-time control law to

the path following subsystem and then the formation

subsystem. Simulation results are presented in Section

4. Conclusions are given in Section 5.

2 Preliminaries and problem formulation

The network topology of the coordinated path follow-

ing system can be described by a digraph G = {V, E},

where the nodes V = {V0, · · · ,Vn} are associated to a

virtual leader labeled by V0 and n vehicles labeled by
{V1, · · · ,Vn}, respectively, and E ⊆ V × V is a set of

network links. A directed path from node Vj to Vi is a
sequence of edges (Vi,Vi1), (Vi1 ,Vi2) , . . . ,

(

Vil−1
,Vil

)

,

(Vil ,Vj) in the network topology with distinct nodes

Vik , k = 0, . . . , l. A digraph is called a directed tree

if there exists a node, called the root, that has di-

rected paths to all other nodes in the digraph. Let, for

i, j = 0, . . . , n, aii = 0, aij = 1 if (Vj ,Vi) ∈ E , and

aij = 0 otherwise. In addition define the Laplacian ma-
trix L , [lij ]

n
i,j=0 with lii =

∑n
j=1 aij and lij = −aij ,

for any i 6= j, i, j = 0, . . . , n. Let R denotes the set

of real numbers, Rn×m denotes the sets of n ×m real

matrices and 0 denotes the zero matrix of appropriate

dimension. For the considered coordinated path follow-
ing system the Laplacian matrix L can be written as

L =

[

0 0

l0 L1

]

,

where l0 = [l10, · · · , ln0]
T and L1 ∈ R

n×n. Suppose
that Assumption 1 holds. L1 is a nonsingular M-

matrix and all eigenvalues of L1 have positive real parts

[Zhang & Tian, 2009].

Assumption 1. The digraph consisting of a virtual

leader and n vehicles contains a directed spanning tree

with root V0.

To solve the trajectory restriction problem in the ge-

ometry extension method a new definition of the barrier
function Ψi is given.

Definition 1. A C2 function Ψi : (−εi, εi) → R is a

barrier function with barrier 2εi > 0 if

(C1) lim
λi→−ε+i

Ψi (λi) = +∞ and lim
λi→−ε+i

∇Ψi (λi) = −∞.

(C2) lim
λi→ε−i

Ψi (λi) = +∞ and lim
λi→ε−i

∇Ψi (λi) = +∞.

(C3) ∇Ψi (0) = 0.

(C4) |Ψi| ≥ cΨ |λi| with a bounded positive constant cΨ .
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Remark 1. (C4) is an additional condition in con-

trast with Ψi in [Chen & Tian, 2015,Chen et al., 2020].

2.1 Problem formulation

In a fixed inertial reference frame the model of the vir-

tual leader under Assumption 2 is the first-order dy-

namics such that ṗ0 = 0, where p0 = [px0
, py0

]
T
∈ R

2 is

its position. Let i = 1, · · · , n. The dynamic equation for

the ith follower satisfying the second-order dynamics is

given by

ṗi = vi,

v̇i = ui, (1)

where pi = [pxi
, pyi

]
T

∈ R
2 and vi = [vxi

, vyi
]
T

∈ R
2

denotes the position and velocity variables, respectively.

ui = [uxi , uyi ]
T
∈ R

2 denotes the control input.

Assumption 2. The virtual leader is stationary,
that is the position of the virtual leader is fixed on a

virtual orbit.

Suppose that the desired orbit associated to each

agent is a simple, closed and regular curve with nonzero

curvature. In [Chen & Tian, 2015] such curve can be

geometry extended to be a set of level curves, in which

can be defined by a smooth function (that is the orbit
function) λi : Ωi → (−εi, εi) and the desired orbit can

be defined by λi(pi) = 0, where Ωi ⊂ R
2 is an open set

and p ∈ R
2. Let the arc-lengthes are given by

si (λi, φi) ,

∫ φi

φ∗

i

∂si (λi, τ)

∂τ
dτ, (2)

where φ∗i is the parameter associated with the starting

point of the arc of si. The generalized arc-lengthes ξi :
R → R, the functions of the arc-lengths si such that

∂ξi/∂si is a constant and cξ ≤ |∂ξi/∂si| ≤ cξ̄ with two

positive constants cξ and cξ̄, are used to describe the

formation along the curves.

Finite-time coordinated path following con-

trol problem. Let i ∈ [1, n]. Consider the system (1)

and the initial position pi(0) ∈ Ωi. Suppose Assump-
tions 1 and 2 hold. Design a finite-time coordinated

path following control ui such that

lim
t→T

λi(pi(t)) = 0 (3)

with a finite time T > 0, pi(t) ∈ Ωi, for all t ≥ 0, where

Ωi =
{

pi ∈ R
2 | |λi (pi(t))| < εi

}

, (4)

and

lim
t→T

ξi(t) = ξ0(0). (5)

Remark 2. This paper devotes to designing a finite-

time control law for directed networking second-order

agents for the coordinated path following problem.

However, [Chen et al., 2020] deals with the adaptive de-

sign for first-order agents with unknown time-varying

parameters and bidirectional topologies.

3 Main results

3.1 Open-loop system

The path following dynamics by differentiating λi is

λ̇i = ‖∇λi‖ vNi
, (6)

where vNi = NT
i vi denotes the velocity projected on

the normal vector Ni = ∇λi

‖∇λi‖
on the level orbit of

the current position of the vehicle. Differentiating both

sides of vNi yields

v̇Ni = uNi +∆Ni , (7)

where uNi = NT
i ui denotes the control input pro-

jected on the normal vector Ni, ∆Ni
= vTi Ṅi and

Ṅi =
∇2λivi
‖∇λi‖

−
NiN

T
i ∇2λivi

‖∇λi‖
.

Differentiating (2) one has ṡi = vTi
+ ∂si

∂λi
‖∇λi‖ vNi

,

where vTi = TT
i vi denotes the velocity projected on the

tangent vector Ti = [R1, R2]
TNi to the level orbit of

the current position of the vehicle with R1 = [0, 1]T

and R2 = [−1, 0]T . Then the dynamics of ξi is given by

ξ̇i =
∂ξi
∂si

vTi
+∆ξi , (8)

where ∆ξi
= ∂ξi

∂si
∂si
∂λi

‖∇λi‖ vNi
. Differentiating both

sides of vTi
yields

v̇Ti
= uTi

+∆Ti
, (9)

where uTi
= TT

i ui denotes the control input projected
on the tangent vector Ni and ∆Ti

= vTi RṄi.

Let ςi =
n
∑

j=0

aij (ξi − ξj) denote the formation er-

rors. The dynamics of ςi is described by the equation

ς̇i =

n
∑

j=0

aij

(

∂ξi
∂si

vTi +∆ξi −
∂ξj
∂sj

vTj −∆ξj

)

. (10)

As a result, the equations of the formation tracking

control system are given by (6), (7), (9) and (10).



4 Weibin Chen, Yang-Yang Chen

3.2 Controller design

Let us first consider the path following subsystem con-

sisting of (6) and (7) and the virtual control v̂Ni
be

v̂Ni
= −k1 (∇Ψi)

1/α
, (11)

where the control gain k1 will be selected later. Consider

the candidate Lyapunov function

VP =

n
∑

i=1

Ψi + γ1

n
∑

i=1

∫ vNi

v̂Ni

(

τα − v̂αNi

)2−1/α
dτ. (12)

where γ1 = 1
(2−1/α)k1+α

1

. The first term in (12) con-

tributes to achieving the path following objective, i.e.,

the equations (3) and (4). The second term contributes

to guaranteeing the convergence of the differences v̄Ni =

vαNi
− v̂αNi

. Differentiating both sides of (12) along the

trajectories of (6), (7) and (11) yields

V̇P = −

n
∑

i=1

k1 ‖∇λi‖∇Ψ
1+1/α
i +

n
∑

i=1

∇Ψi ‖∇λi‖ ṽNi

+ γ1

n
∑

i=1

(

vαNi
− v̂αNi

)2−1/α
(uNi

+∆Ni
) +

n
∑

i=1

fλi
λ̇i

≤ −

n
∑

i=1

k1 ‖∇λi‖∇Ψ
1+1/α
i +

n
∑

i=1

‖∇λi‖ |∇ΨiṽNi |

+ γ1

n
∑

i=1

(

vαNi
− v̂αNi

)2−1/α
(uNi +∆Ni) + fP , (13)

where

fλi
= −

1

k1+α
1

∂v̂αNi

∂λi

∫ vNi

v̂Ni

(

τα − v̂αNi

)1−1/α
dτ

= k−1
1 ∇2Ψi

∫ vNi

v̂Ni

(

τα − v̂αNi

)1−1/α
dτ,

fP =

n
∑

i=1

k−1
1 ‖∇λi‖

(

vαNi
− v̂αNi

)1−1/α

×
∣

∣vNi
∇2Ψi

(

vNi
− v̂Ni

)∣

∣ ,

ṽNi
= vNi

− v̂Ni

According to

|ṽNi
| =

∣

∣

∣

(

vαNi

)1/α
−
(

v̂αNi

)1/α
∣

∣

∣ ≤ 21−1/α
∣

∣vαNi
− v̂αNi

∣

∣

1/α

and Lemmas A.1 and A.2 in [Qian & Lin, 2001] we have

that

|∇ΨiṽNi
| ≤ 21−1/α |∇Ψi|

∣

∣vαNi
− v̂αNi

∣

∣

1/α

≤ (∇Ψi)
1+1/α

+ cφ1

(

vαNi
− v̂αNi

)1+1/α
, (14)

where cφ1
= 21−1/α 1

1+αφ
−α
Ψ and φΨ=

(

21−1/α α
1+α

)−1

.

Note that

∣

∣vNi

(

vNi
− v̂Ni

)∣

∣ ≤
(

vNi
− v̂Ni

)2
+
∣

∣v̂Ni

∣

∣

∣

∣vNi
− v̂Ni

∣

∣ ,
(

vNi
− v̂Ni

)2
≤ 22−2/α

(

vαNi
− v̂αNi

)2/α
,

∣

∣v̂Ni

∣

∣

∣

∣vNi
− v̂Ni

∣

∣ ≤ k12
1−1/α |∇Ψi|

1/α ∣

∣vαNi
− v̂αNi

∣

∣

1/α
,

|∇Ψi|
1/α ∣

∣vαNi
− v̂αNi

∣

∣ ≤
1/α

1 + 1/α
φ2 |∇Ψi|

1+1/α

+
1

1 + 1/α
φ
−1/α
2

∣

∣vαNi
− v̂αNi

∣

∣

1+1/α

= |∇Ψi|
1+1/α

+ cφ2

∣

∣vαNi
− v̂αNi

∣

∣

1+1/α
, (15)

where cφ2
= α

1+αφ
−1/α
2 and φ2 = 1 + α. We conclude

that

fP ≤

n
∑

i=1

k−1
1 ‖λi‖

∣

∣∇2Ψi

∣

∣

(

22−2/α
(

vαNi
− v̂αNi

)1+1/α

+k12
1−1/α

(

|∇Ψi|
1+1/α

+ cφ2

∣

∣vαNi
− v̂αNi

∣

∣

1+1/α
))

.

(16)

On the set ΦP = {(λi, ṽNi) |VF ≤ cP }, for some cP > 0,
one has

cλ ≤ ‖∇λi‖ ≤ cλ̄,
∣

∣∇2Ψi

∣

∣ ≤ cΨ2 (17)

with some cλ > 0, cλ̄ > 0 and cΨ2 > 0. Exploiting the

inequalities (14), (16) and (17) we conclude that

V̇P ≤ −

n
∑

i=1

(

k1cλ − cλ̄ − cλ̄2
1−1/αcΨ2

)

(∇Ψi)
1+1/α

+

n
∑

i=1

cN
(

vαNi
− v̂αNi

)1+1/α

+ γ1

n
∑

i=1

(

vαNi
− v̂αNi

)2−1/α
(uNi

+∆Ni
) , (18)

which yields

uNi
= −∆Ni

− k2
(

vαNi
− v̂αNi

)−1+2/α
,

k1 > c−1
(

cλ̄ + c−α21−1/αcΨ2 + βp1

)

,

k2 > (2− 1/α) k1+α
1 cN , (19)

where cN = c
λ̄

(

cφ1
+ k−1

1 22−2/αcΨ2 + 21−1/αcφ2
cΨ2

)

and βp1
is an arbitrary positive constant. Note that

(∇Ψi)
1+1/α

+
(

vαNi
− v̂αNi

)1+1/α

≥
(

(∇Ψi)
2
+
(

vαNi
− v̂αNi

)2
)(1+1/α)/2

. (20)
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Suppose that VP (t) 6= 0. Substituting (19) into (18)

yields

V̇P ≤ −βp1

n
∑

i=1

(

(∇Ψi)
2
+
(

vαNi
− v̂αNi

)2
)(1+1/α)/2

= −gPV
(1+1/α)/2
P , (21)

where gP = βp1
V

−(1+1/α)/2
P

∑n
i=1

(

(∇Ψi)
2
+

(

vαNi

−v̂αNi

)2
)(1+1/α)/2

. By equation (19) the closed-loop

equations associated to the path following subsystem

for the ith follower are

λ̇i = −k1 ‖∇λi‖ (∇ψi)
1/α

+ ‖∇λi‖ ṽNi
,

˙̄vNi = −kα2
(

vαNi
− v̂αNi

)2−α
− ˙̂vαNi

. (22)

Remark 3. It is obvious that the closed-loop sys-

tem (22) for path following is not homogeneous. There-

fore, the finite-time stability analysis method given

in [Gu et al., 2012,Dou et al., 2019] can not applied in
this paper.

Note that 0 < (1 + 1/α)/2 < 1. To apply Theorem

4.2 in [Bhat & Bernstein, 2000] we will show that gP
has lower bound. From (C4) we have that

Ψi =

∫ λi

λi0

∇Ψi (τ)dτ ≤ c−1
Ψ |∇Ψi|

2
+ |∇Ψi| εi,

∫ vNi

v̂Ni

(

τα − v̂αNi

)2−1/α
dτ ≤ 21−1/α

∣

∣vαNi
− v̂αNi

∣

∣

2
(23)

with ψi0 = ψi (λi0) and λi0 = λi (0), which yields

VP ≤ βp3

n
∑

i=1

[

(∇Ψi)
2
+
(

vαNi
− v̂αNi

)2
]

+ cp3
, (24)

where βp3
= max

{

c−1
Ψ , 21−1/α

(2−1/α)k1+α
1

}

, cp3
=

n
∑

i=1

|∇Ψi| εi

and βp4
is positive and bounded. As a result,

gP ≥

βp1

n
∑

i=1

(

(∇ψi)
2
+
(

vαNi
− v̂αNi

)2
)(1+1/α)/2

(

βp3

n
∑

i=1

(

(∇ψi)
2
+
(

vαNi
− v̂αNi

)2
)

+ cp3

)(1+1/α)/2

≥ βp4
. (25)

According the Theorem 4.2 in [Bhat & Bernstein, 2000]

we establish the following theorem.

Theorem 1 Suppose that the initial positions of vehi-

cles are such that pi(0) ∈ Ωi. Assume moreover that

Assumption 2 holds. Then the path following objectives

(3) and (4) can be achieved by the finite-time control

uNi
given in (19) for i = 1, · · · , n.

Proof: From (21) we conclude that the function VP
is bounded all the time, which implies the objective (4)

is satisfied according to (C1) and (C2). From (21) and

(25) we conclude that λi = 0 and v̄Ni
are the finite-

time-stable equilibria of the closed-loop path following

equations (22). �

In the following we will consider the formation sub-

system consisting of (9) and (10). Let the virtual control

v̂Ti
be

v̂Ti
= −

(

∂ξi
∂si

)−1

k3ςi
1/α, (26)

where k3 is a positive control gain and will be selected

later. Consider the candidate Lyapunov function

VF =
1

2

n
∑

i=1

ς2i + γ2

n
∑

i=1

∫ vTi

v̂Ti

(

τα − v̂αTi

)2−1/α
dτ, (27)

where γ2 = 1
(2−1/α)k1+α

3

. In (27) the first term con-

tributes to achieving the formation objective, i.e., the

equation (5). The second term contributes to guaran-

teeing the convergence of the differences v̄Ti
= vαTi

−v̂αTi
.

Differentiating both sides of (27) along the trajectories

of (9), (10) and (26) yields

V̇F = −k3

n
∑

i=1

ςi

n
∑

j=0

aij

(

ςi
1/α − ςj

1/α
)

+ fF

+ γ2

n
∑

i=1

(

vαNi
− v̂αNi

)2−1/α
(uTi

+∆Ti
) + gF1

+ gF2
,

(28)

where ṽTj
= vTi

− v̂Ti

fF =

n
∑

i=1

ςi

n
∑

j=0

aij

(

∂ξi
∂si

ṽTi
−
∂ξj
∂sj

ṽTj

)

(29)

gF1
=

n
∑

i=1

ςi

n
∑

j=0

aij

(

∆ξi −∆ξj

)

, (30)

gF2
= −

1

k3

n
∑

i=1

(

∂ξi
∂si

)−α n
∑

i=1

∫ vTi

v̂Ti

(

τα − v̂αTi

)1−1/α
dτ

×
n
∑

j=0

aij

(

∂ξi
∂si

vTi
+∆ξi −

∂ξj
∂sj

vTj
−∆ξj

)

. (31)

Note that

fF ≤

n
∑

i=1

|ςi|



γ1cξ̄ |ṽTi |+ γ2cξ̄

n
∑

j=0

∣

∣ṽTj

∣

∣



 , (32)
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where γ3 = max∀i

{

∑n
j=0 aij

}

and γ4 = max∀i,j {aij}.

Lemmas A.1 and A.2 in [Qian & Lin, 2001] yield

|ṽTi | =
∣

∣

∣

(

vαTi

)1/α
−
(

v̂αTi

)1/α
∣

∣

∣ ≤ 21−1/α
∣

∣vαTi
− v̂αTi

∣

∣

1/α
,

|ςi| |ṽTi
| ≤ |ςi|

1+1/α
+ cF1

∣

∣vαTi
− v̂αTi

∣

∣

1+1/α
,

|ςi|
∣

∣ṽTj

∣

∣ ≤ |ςi|
1+1/α

+ cF1

∣

∣

∣vαTj
− v̂αTj

∣

∣

∣

1+1/α

, (33)

where cF1
= 21−1/αn1−1/α 1

1+αφ
−α
F1

and φF1
= (21−1/α

n1−1/α α
1+α )

−1. Substituting equations (33) into (32)

yields

fF ≤ cς1

n
∑

i=1

|ςi|
1+1/α

+ cvT1

n
∑

j=0

∣

∣

∣vαTj
− v̂αTj

∣

∣

∣

1+1/α

, (34)

where cς1 = γ3cξ̄ + γ4cξ̄ and cvT1
= γ3cξ̄cF1

+

γ4cξ̄ncF1
cF1

. Note that

gF2
≤ gF21

+ gF22
, (35)

where

gF21
=

n
∑

i=1

k−1
3 c−α

ξ

(

vαTi
− v̂αTi

)1−1/α ∣

∣vTi
− v̂Ti

∣

∣

×
n
∑

j=1

aij

∣

∣

∣

∣

∂ξi
∂si

vTi
−
∂ξj
∂sj

vTj

∣

∣

∣

∣

,

gF22
=

n
∑

i=1

k−1
3 c−α

ξ

(

vαTi
− v̂αTi

)1−1/α ∣

∣vTi
− v̂Ti

∣

∣

×

n
∑

j=1

aij

∣

∣

∣∆ξi −∆ξj

∣

∣

∣. (36)

Due to the fact that

∣

∣v̂Ti

∣

∣

∣

∣vTi
− v̂Ti

∣

∣ ≤
(

vTi
− v̂Ti

)2
+
∣

∣v̂Ti

∣

∣

∣

∣vTi
− v̂Ti

∣

∣

≤ k3c
−1
ξ 21−1/α |ςi|

1/α ∣

∣vαTi
− v̂αTi

∣

∣

1/α
,

∣

∣

∣
v̂Tj

∣

∣

∣

∣

∣vTi
− v̂Ti

∣

∣ ≤ k3c
−1
ξ 21−1/α |ςj |

1/α ∣

∣vαTi
− v̂αTi

∣

∣

1/α
,

|vTi |
∣

∣vTi
− v̂Ti

∣

∣ ≤
(

vTi
− v̂Ti

)2
+
∣

∣v̂Ti

∣

∣

∣

∣vTi
− v̂Ti

∣

∣

≤ 22−2/α
(

vαTi
− v̂αTi

)2/α

+ k3c
−1
ξ 21−1/α |ςi|

1/α ∣

∣vαTi
− v̂αTi

∣

∣

1/α
,

∣

∣vTj

∣

∣

∣

∣vTi
− v̂Ti

∣

∣ ≤ 22−2/α
∣

∣

∣vαTj
− v̂αTj

∣

∣

∣

1/α
∣

∣vαTi
− v̂αTi

∣

∣

1/α

+ k3c
−1
ξ 21−1/α |ςj |

1/α ∣

∣vαTi
− v̂αTi

∣

∣

1/α
,

(37)

from (36), one has

gF21
≤

n
∑

i=1

k−1
3 c−α

ξ

(

vαTi
− v̂αTi

)1−1/α
gF23

, (38)

where

gF23
= γ1cξ̄

(

22−2/α
(

vαTi
− v̂αTi

)2/α

+k3c
−1
ξ 21−1/α |ςi|

1/α ∣

∣vαTi
− v̂αTi

∣

∣

1/α
)

+ γ2cξ̄

n
∑

j=0

(

22−2/α
∣

∣

∣
vαTj

− v̂αTj

∣

∣

∣

1/α
∣

∣vαTi
− v̂αTi

∣

∣

1/α

+k3c
−1
ξ 21−1/α |ςj |

1/α ∣

∣vαTi
− v̂αTi

∣

∣

1/α
)

. (39)

From Lemmas A.1 and A.2 in [Qian & Lin, 2001] we

have

|ςi|
1/α ∣

∣vαTi
− v̂αTi

∣

∣ ≤ |ςi|
1+1/α

+ cF2

∣

∣vαTi
− v̂αTi

∣

∣

1+1/α
,

|ςj |
1/α ∣

∣vαTi
− v̂αTi

∣

∣ ≤ |ςj |
1+1/α

+ cF2

∣

∣vαTi
− v̂αTi

∣

∣

1+1/α
,

∣

∣

∣vαTj
− v̂αTj

∣

∣

∣

1/α
∣

∣vαTi
− v̂αTi

∣

∣ ≤
∣

∣

∣vαTj
− v̂αTj

∣

∣

∣

1+1/α

+ cF2

∣

∣vαTi
− v̂αTi

∣

∣

1+1/α
(40)

with cF2
= n1−1/α α

1+αφ
−α
F2

and φF2
=

(

n1−1/α 1
1+α

)−1

,

which yields

n
∑

i=1

cF1

(

vαTi
− v̂αTi

)1−1/α
gF23

≤ cvT2

n
∑

i=1

(

vαTi
− v̂αTi

)1+1/α
+ cς2

n
∑

i=1

|ςi|
1+1/α

, (41)

where

cvT2
= k−1

3 c−α
ξ γ3cξ̄2

2−2/α + c−α−1
ξ γ1cξ̄2

1−1/αcF2

+ k−1
3 c−α

ξ γ4cξ̄2
2−2/αcF2

n+ c−α−1
ξ γ4cξ̄2

1−1/αcF2
n

and

cς2 = c−α−1
ξ γ3cξ̄2

1−1/α + k−1
3 c−α

ξ γ4cξ̄2
2−2/αn.

From (35), (38) and (41) we conclude that

gF2
≤ cvT2

n
∑

i=1

(

vαTi
− v̂αTi

)1+1/α
+ cς2

n
∑

i=1

|ςi|
1+1/α

+ gF22
.

Substituting the above equation and (34) into (28)

yields

V̇F ≤ −k3

n
∑

i=1

ςi

n
∑

j=0

aij

(

ςi
1/α − ςj

1/α
)

+ (cς1 + cς2)

×

n
∑

i=1

|ςi|
1+1/α

+ γ2

n
∑

i=1

(

vαNi
− v̂αNi

)2−1/α
(uTi +∆Ti)

+ (cvT1
+ cvT2

)

n
∑

j=0

(

vαTi
− v̂αTi

)1+1/α
+ gF1

+ gF22
,

(42)
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in which makes the choices such that

uTi = −∆Ti − k4
(

vαTi
− v̂αTi

)2/α−1
, (43)

where the control gain k4 is set later. As a result, the

closed-loop formation subsystem for the ith follower is

ς̇i = −k3

n
∑

j=0

aij

(

ςi
1/α − ςj

1/α
)

+

n
∑

j=0

aij

(

∆ξi −∆ξj

)

+

n
∑

j=0

aij

(

∂ξi
∂si

ṽTi −
∂ξj
∂sj

ṽTj

)

,

˙̄vTi
= −kα4

(

vαTi
− v̂αTi

)2−α
− ˙̂vαTi

. (44)

Substituting −k3ς
TL1ς

1/α ≤ −k3ρL1
n−1

n
∑

i=1

|ςi|
1+1/α

and (43) into (42) yields

V̇F ≤ −
(

k3ρL1
n−1 − cς1 − cς2

)

n
∑

i=1

|ςi|
1+1/α

− (−cvT1

+k4γ2 − cvT2
)

n
∑

i=1

(

vαTi
− v̂αTi

)1+1/α
+ gF1

+ gF22
,

which makes the choices of the control gains as follows:

k3 ≥ ρ−1
L1
n (cς1 + cς2 + βF1

) ,

k4 ≥ (2− 1/α) k1+α
3 (cvT1

+ cvT2
+ βF1

) , (45)

where βF1
is an arbitrary positive constant. As a result,

V̇F ≤ −βF1

n
∑

i=1

|ςi|
1+1/α

− βF1

n
∑

i=1

(

vαTi
− v̂αTi

)1+1/α

+ gF1
+ gF22

. (46)

Let lF = max
{

1, 21−1/α

(2−1/α)k1+α
3

}

. Then

VF ≤
n
∑

i=1

[

ς2i +
21−1/α

(2− 1/α) k1+α
3

(

vαTi
− v̂αTi

)2
]

≤ lF

n
∑

i=1

[

ς2i +
(

vαTi
− v̂αTi

)2
]

, (47)

which yields V
(1+1/α)/2
F ≤ l

(1+1/α)/2
F

(

n
∑

i=1

ς1+1/α+

n
∑

i=1

(

vαTi
−v̂αTi

)1+1/α
)

. Suppose that VF (t) 6= 0. Equa-

tion (46) can be rewritten as

V̇F ≤ −βF2
V

(1+1/α)/2
F + gF3

, (48)

where

βF2
=

βF1

n
∑

i=1

|ςi|
1+1/α

+ βF1

n
∑

i=1

(

vαTi
− v̂αTi

)1+1/α

l
(1+1/α)/2
F

(

n
∑

i=1

ς1+1/α +
n
∑

i=1

(

vαTi
− v̂αTi

)1+1/α
) ,

gF3
=
gF1

+ gF22

V
(1+1/α)/2
2F

.

Due to 0 < (1+1/α)/2 < 1, βF2
has lower bound. Also

gF3
disappears as limt→T λi(t) = 0 and limt→T v̄Ni

(t) =
0 as proven in Theorem 1. We give the following result

directly.

Theorem 2 Suppose that the initial positions of vehi-

cles are such that pi(0) ∈ Ωi. Assume moreover that
Assumptions 1 and 2 hold. Then the formation objec-

tive (5) can be achieved by the finite-time control uTi

given in (43) for i = 1, · · · , n.

Proof: The proof follows the same argument as
the proof of Theorem 5.3 in [Bhat & Bernstein, 2000],

hence it is omitted. �

Theorems 1 and 2 yield the following result.

Theorem 3 Suppose that the initial positions of ve-

hicles are such that pi(0) ∈ Ωi. Assume moreover
that Assumptions 1 and 2 hold. For i = 1, · · · , n, the

finite-time coordinated path following control problem is

solved by the coordinated path following control

ui =

[

NT
i

TT
i

]−1 [
uNi

uTi

]

, (49)

where uNi and uTi are as given in the equations (19)

and (43), respectively.

Remark 4. In this paper, we first give a new bar-

rier function with an additional condition (C4) on page

3. Then a novel continuous finite-time path follow-

ing control law is designed based on the barrier func-

tion and backstepping. Simultaneously, a novel contin-

uous finite-time formation algorithm is designed by re-

garding the path following errors as disturbances. In
[Chen et al., 2020], a so-called congelation of variables

method is used to design the adaptive updated law for
unknown time-varying parameters, and at the same

time the coordinated path following law is designed

based on a unified Lynapunov function.

Remark 5. The settling time properties of the

resulting system are studied according to the finite-

time stability theory in this paper, which is different

from the asymptotic properties of the resulting adap-

tive system by using the Lynapunov stability theory in

[Chen et al., 2020].

4 Simulation

The desired formation is a triangle pattern with a
digraph as shown in Figure 1. The selected trajec-
tories for the agents are concentric ellipses with dif-

ferent semi-major axis and semi-minor axis, that is

Cl0 : p2xl
/(ela)

2 + p2yl
/(elb)

2 = 1, where el = 1 + 0.5l,
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a = 3, b = 2, l = 0, 1, 2, 3, 4. The parameters are se-

lected as k1 = k3 = 2.7, k2 = k4 = 34 and α = 9/7.
The initial generalized arc-length of the virtual leader

is ξ0(0) = 0. The motion of the agents is illustrated in

Figure 2, where o, �, ⋆ and + denote the agents’ posi-

tions at t = 0, t = 1, t = 2 and t = 7, respectively. From
this figure one can see that the four agents converge to

the given orbits and form the desired formation. The
time histories of the path following errors λi and of the

formation errors ξi − ξ0 are plotted in Figures 3 and

4, respectively. From above figures we show that path
following and formation tracking are achieved.

1


2


3


4


0


Fig. 1 The leader-following topology.
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Fig. 2 The motion of the agents.

5 Conclusion

A continuous feedback method to solve the finite-time
coordinated path following control problem has been
presented, where the topology among the virtual leader
and follows is directed. Since the restriction of the mov-

able ranges of the agents, a novel barrier function is

given. The finite-time path following control law and

0 0.02 0.04 0.06 0.08 0.1

t

0

0.05

0.1

0.15

i

1

2

3

4

Fig. 3 Path following errors.
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-
0

4
-
0

Fig. 4 Formation errors.

the finite-time formation control law are designed, re-

spectively. Conditions on the control gains to guarantee
that the path following errors and the formation errors
finite-time converge to zeros are presented.
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