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Abstract

Medical image segmentation is one of the fundamental problems for artificial intelligence-
based clinical decision systems. Current automatic medical image segmentation methods are often
failed to meet clinical requirements. As such, a series of interactive segmentation algorithms
are proposed to utilize expert correction information. However, existing methods suffer from
some segmentation refining failure problems after long-term interactions and some cost problems
from expert annotation, which hinder clinical applications. This paper proposes an interactive
segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence
CAlibration (MECCA), by introducing the corrective action evaluation, which combines the action-
based confidence learning and multi-agent reinforcement learning (MARL). The evaluation is
established through a novel action-based confidence network, and the corrective actions are
obtained from MARL. Based on the confidential information, a self-adaptive reward function
is designed to provide more detailed feedback, and a simulated label generation mechanism is
proposed on unsupervised data to reduce over-reliance on labeled data. Experimental results on
various medical image datasets have shown the significant performance of the proposed algorithm.

1 Introduction

Medical image segmentation is one of the essential tasks for computer-aided medical diagnosis.
However, due to the pathological variability, dark lesion areas, as well as the uneven quality of the
training data (lacking the consistency between imaging scanners, operators, and annotators), the
accuracy of traditional convolutional neural networks (CNNs) type segmentation algorithms usually
fail to meet clinical demands Wang et al. (2018a,b); Liao et al. (2020). To further refine the relatively
inaccurate segmentation results, interactive image segmentation algorithms that take advantage of
interactive correction information (e.g., clicks, scribbles, or bounding boxes) are introduced Rajchl
et al. (2016); Xu et al. (2016); Lin et al. (2016); Wang et al. (2018b,a); Bredell et al. (2018); Liao
et al. (2020); Ma et al. (2020). The general interactive segmentation process is depicted in Figure 1,
which contains two modules, i.e., interactive module and utilization module. In the interactive
module, the users (or experts) provide some interaction correction information (e.g., hint information
like clicks and scribbles). In the utilization module, the segmentation algorithm takes advantage
of the interaction correction information to refine the previous model efficiently. The interactive
segmentation algorithms can achieve better performance than traditional segmentation algorithms by
utilizing the additional interactive correction information. The interaction process can be considered
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as the continuous cooperation between the model and the human expert. As a result, an excellent
interactive segmentation model should understand experts’ interactive information and update itself
to collaborate better.
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Figure 1: The framework of the interactive segmentation process. Interactive module: the expert
observes current (or initial) segmentation and provides further correction information (red hints);
Utilization module: new segmentation is refined based on the correction information.

(a) Correction information is ignored (b) Refined result becomes worse

Figure 2: Segmentation refining failure after long-term interactions on BraTS2015 images: a) The
segmentation model can not fully understand the hint information or just ignores it. b) The interactive
segmentation model could misunderstand the expert’s interaction correction, which results in the
worse result;

Methods such as BIFSeg Wang et al. (2018a) and DeepIGeos Wang et al. (2018b) model user inter-
actions as hard constraints through conditional random fields (CRFs) end-to-end training. However,
these model more focus on the one-step interaction and the refined segmentation after the first step
cannot be efficiently used in these model Liao et al. (2020); Ma et al. (2020). Thus, these model can
not utilize the long-term interactive information but the short-term interactive information efficiently.
The follow-up InterCNN Bredell et al. (2018) and other methods Liao et al. (2020); Ma et al. (2020)
are improved on DeepIGeos and BIFSeg, modeling the problem as an iterative interaction problem,
which are more focus on the multi-step interaction. Therefore, these method can cover the data distri-
bution corresponding to different interaction levels in the training phase to effectively use long-term
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interactions, while ignoring the stochasticity or uncertainty of the model makes it difficult for them
to effectively use short-term interactive information. Existing interactive methods cannot effectively
utilize both short-term and long-term interactive information at the same time, which leads to the
interactive misunderstanding phenomenon\. Figure 2 presents this phenomenon when implementing
the popular interactive segmentation algorithm InterCNN Bredell et al. (2018) on the BraTS2015
dataset. The algorithm ignores the expert’s correction information as in Figure 2(a), and even be
adversely affected by correction information as in Figure 2(b). These inconsistencies between hint
information and the refined results indicate that existing algorithms still face the critical challenge of
inefficiency utilization of interactive correction information. The reason for segmentation refining
failure is that, at the end of the interactive procedure, the total loss of the model will guarantee the
main area’s priority and ignore some small but challenging areas, such as edges. The regions that are
insensitive to interactive correction information could be considered hard-to-segment regions Nie
et al. (2019); Shrivastava et al. (2016), which leads to mediocre segmentation refinement. If these
regions are not paid more attention during the training stage, the segmentation model will inevitably
dominate those easy-to-segment regions. This problem is more serious for medical images, where the
hard-to-segment regions usually are tumor boundaries and are very important for clinical diagno-
sis and surgery. Therefore, it becomes urgent to improve the utilization of correction information,
especially for the hard-to-segment regions.

Besides, the requirement of large amounts of expert-annotated images is another crucial issue.
On the one hand, accurate annotations of medical images require plenty of time of experts, so it is
expensive to acquire sufficient data with high-quality annotations. On the other hand, more unlabeled
images can be obtained with much less cost but existing popular interactive segmentation methods
usually ignore utilizing these low-cost images. Thus it becomes more and more critical to reduce the
need for expert-annotated images while simultaneously taking advantage of those unlabeled images.

In this paper, we propose a novel interactive segmentation algorithm for 3D medical images called
interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA). MECCA
combines an action-based confidence learning network with the multi-agent reinforcement learning
framework. The action-based confidence network could evaluate the corrective actions’ quality by
directly calculating the refinement actions’ confidence. Unlike learning the confidence of the overall
segmentation result, the confidence of actions could better evaluate whether the segmentation model
has correctly utilized the experts’ interactive correction information. We formulate the iterative
interactions process as a Markov decision process(MDP) to model the dynamic process and further
introduce the reinforcement learning technique Song et al. (2018). Further, instead of setting each
image or each patient (a series of images) as the agent, we consider each voxel† as an agent while each
agent aims to learn the segmentation policy and makes its decision Furuta et al. (2020). Specifically,
after receiving the interactive correction information, each agent will modify its label by changing
(increasing or decreasing) the category probability. The novel action-based confidence network
will directly evaluate each agent’s corrective action obtained from the corrective policy of MARL.
By utilizing this action-based confidence network, two additional techniques are further proposed
to improve the utilization efficiency of the interactive correction information: 1) compared with
former manual-designed rewards, a self-adaptive reward function of each action is constructed,
which could provide more meticulous feedback under a flexible framework; 2) a simulated label
generation mechanism is established by utilizing the interactive correction information as the weakly
supervisory signal. By combining the confidence network, the simulated label generation mechanism
can approximately generate the labels for unsupervised images and reduce over-reliance on labeled
data. The overall algorithm framework of our proposed algorithm is shown in Figure 3(a). The

\This phenomenon will be discussed in detail in the Section 3.3.
†The smallest unit in three-dimensional space.
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(a) The architecture of MECCA.
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(b) The testing stage of MECCA.

Figure 3: (a) The architecture of MECCA. The segmentation module outputs actions to change the
segmentation probability of each voxel(agent) at each interaction step. Meanwhile, the confidence
network will estimate the confidence of actions, which will generate the self-adaptive reward and
simulated label. The confidence map can provide the advice regions of the next interaction step
to experts. (b) The testing stage of MECCA. In the first instance, all voxels in the segmentation
probability map are initialized to a fixed value (set to 0.5 in the experiment). Users or experts
randomly mark hint points according to the initialized segmentation probability map.

main contributions of this work are summarized as follows: 1) A novel framework is proposed for
interactive medical image segmentation by combining action-based confidence learning network
with multi-agent reinforcement learning; 2) A self-adaptive feedback mechanism (self-adaptive
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reward) is constructed with the action-based confidence network to alleviate the effect of interactive
misunderstanding phenomenon during the interaction process; 3) Simulated supervisory signals can
be generated based on the confidence learning network and actions; hence much less labeled data
(ground truth data) are needed to achieve the same performance.

The following is the roadmap of this paper. Section 2 provides a brief but complete introduction
to related works in image segmentation and interactive image segmentation, while the background
material on confidence learning is also provided. Section 3 describes the proposed interactive image
segmentation algorithm, including the segmentation policy, the evaluation of corrective actions, the
self-adaptive rewards, and the label generation scheme. Extensive experiments are presented in
Section 4. Conclusions and future work discussions are proposed in Section 5.

2 Related Works

Image segmentation is the fundamental problem of computer vision or image processing that has
been widely and long-termly studied. Deep learning (DL) has further promoted the development
of automatic segmentation algorithms, the same as other applications. CNN-type methods are
typical DL algorithms for image segmentation, e.g., fully convolutional networks (FCN) Long et al.
(2015) and DeepLab Chen et al. (2018). The U-Net Ronneberger et al. (2015), which is considered an
evilutionary variant of FCN, becomes one of the SOTA methods and performs better for medical image
segmentation. Medical image segmentation is the key to modern auxiliary diagnosis and treatment
response evaluation. A series of related works were proposed with the progressive performance for
medical image segmentation Milletari et al. (2016); Kamnitsas et al. (2017b); Li et al. (2017). In the
following, we will review the development of interactive image segmentation methods and discuss
confidence learning for image segmentation relevant to our proposed algorithm.

Traditional interactive image segmentation methods. The classical random Walk Grady (2006)
can create a weight map with pixels as vertices and segment the image based on user interactions.
GrabCut Rother et al. (2004) and GraphCut Boykov & Jolly (2001) could associate image segmen-
tation with the maximum flow and minimum cut algorithms on graphs, respectively, while Geos
Criminisi et al. (2008) was proposed to measure the similarity between pixels geodesic distance.
These traditional interactive image segmentation methods aim to utilize additional expert interaction
information to modify the segmentation performance further.

DL-based interactive image segmentation methods. Xu et al. (2016) segments images based on
CNN interactively. DeepCut Rajchl et al. (2016) and ScribbleSup Lin et al. (2016) both employed
weakly supervised expert hints to establish interactive image segmentation methods. DeepIGeoS Wang
et al. (2018b) employed geodesic distance metric to construct a hint map. The interactive segmentation
process can be considered as a sequential iterative process. It becomes natural to introduce the RL
framework to model the interactive segmentation process. Polygon-RNN Castrejon et al. (2017)
fundamentally segmented each target as a polygon and iteratively chose the polygon vertexes through
a recurrent neural network(RNN). Polygon-RNN+ Acuna et al. (2018) employed almost the same
idea of Polygon-RNN but learned to choose vertexes by RL. SeedNet Song et al. (2018) trained an
expert interaction generation RL model, which obtains new simulated interaction information at each
interaction step. IteR-MRL Liao et al. (2020) and BS-IRIS Ma et al. (2020) both modeled the dynamic
interaction process as an MDP and employed multi-agent RL(MARL) models to segment images.
Some researches also aim to reduce the annotation cost of interactive image segmentation. IFSL
Feng et al. (2021) introduces interactive learning into the few-shot learning strategy and addresses
the annotation burden of medical image segmentation models. IOG Zhang et al. (2020) proposes
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a practical Inside-Outside Guidance approach for minimizing the labeling cost. These interactive
methods are difficult to effectively utilize experts’ short-term and long-term interaction information
simultaneously, thus making error correction operations.

Uncertainty estimation for image segmentation Uncertainty estimates are helpful in the context
of deployed machine learning systems as they are capable of detecting when a neural network is
likely to make an incorrect prediction or when the input may be out-of-distribution. Traditionally,
much of the work are inspired by Bayesian statistics, or Bayesian Neural Network (BNN) MacKay
(1992); Neal (2012). Unfortunately, Bayesian inference is computationally intractable in practice, so
much effort has been put into developing approximations of Bayesian neural networks that are easier
to train. Recent efforts to approximate the BNNs in this area include Monte-Carlo Dropout Gal &
Ghahramani (2016), Multiplicative Normalizing Flows Louizos & Welling (2017), and Stochastic Batch
Normalization Atanov et al. (2018). These methods are capable of producing uncertainty estimates,
although with varying degrees of success. The main disadvantage with these BNN approximations is
that they require sampling to generate the output distributions. As such, uncertainty estimates are
often time-consuming or resource-intensive to produce, requiring 10 to 100 forward passes through a
neural network to produce useful uncertainty estimates at inference time. An alternative to BNNs is
ensembling methods Dietterich (2000); Kamnitsas et al. (2017a); Mehrtash et al. (2018); Lakshmi-
narayanan et al. (2017); Mehrtash et al. (2020), which propose a frequentist approach to the problem
of uncertainty estimation by training many models and observing the variance in their predictions.
However, this technique is still quite resourcing intensive, as it requires inference from multiple
models to produce the uncertainty estimate. A promising alternative to sampling-based methods
is to instead have the neural network learn what its uncertainty should be for any give input, i.e.,
learning-based uncertainty estimation or confidence learning, as demonstrated in Kendall & Gal (2017);
DeVries & Taylor (2018a); Robinson et al. (2018); DeVries & Taylor (2018b); Jungo & Reyes (2019);
Moeskops et al. (2017); Hung et al. (2018); Nie et al. (2019). These methods commonly consist of a
segmentation and confidence network and are more computationally efficient than other techniques.
Thus they are better suited when computational resources are limited or when real-time inference is
required, such as the interactive segmentation scenario considered in this paper. Specifically, Kendall
& Gal (2017) introduces a confidence network to predict the aleatoric and epistemic uncertainties by
imitating classic Bayesian tools. The segmentation network of DeVries & Taylor (2018a,b) produces
two separate outputs: prediction probabilities and a confidence estimate. Confidence estimates are
motivated by interpolating between the predicted probability distribution and the target distribution
during training, where the degree of interpolation is proportional to the confidence estimate. A
series of work Nie et al. (2019); Hung et al. (2018); Moeskops et al. (2017) focus on incorporating
the uncertainty estimation into the adversarial learning process, where the segmentation network
corresponds to the generator, and the confidence network is the discriminator accordingly. Moeskops
et al. (2017) firstly employed GANs to improve the CNN-based brain MRI segmentation method.
The semi-supervised learning technique is used in Hung et al. (2018) to predict trustworthy regions
in unlabeled images. Nie et al. (2019) proposed a difficulty-aware attention mechanism to handle
those hard samples or challenging regions. Different from the previous work to learning uncertainty
through imitation, joint training, or adversarial learning, a simple but powerful alternative is to
introduce an auxiliary task, such as to predict the overlap between a proposed segmentation and its
ground truth Robinson et al. (2018), or to predict the voxel-wise false positive and false negative Jungo
& Reyes (2019).

Remark. In our proposed algorithm, the confidence network should evaluate the confidence of
calibrating actions instead of the segmentation result, which is the most significant difference between
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our interactive method and previous learning-based uncertainty estimation methods. Therefore, we
design a novel action-oriented auxiliary task to predict whether the direction of voxel-wise action is
consistent with the ground truth.

3 The Proposed Algorithm

This section will introduce our proposed interactive segmentation algorithm MECCA, which can
iteratively evaluate the refinement actions and feedback to the segmentation model. The algorithm
framework follows the multi-agent reinforcement learning structure (Section 3.1 and Section 3.2) and
an action-based confidence learning module (Section 3.3) is introduced to evaluate the confidence
of corrective actions. This action-based confidence learning module can be used to establish the
self-adaptive reward scheme and simulated label generation mechanism to utilize the interactive
correction information efficiently. The architecture overview of MECCA has been depicted in Figure
3(a). The model’s state information includes the original 3D image, the previous segmentation
probability, and the hint map generated from interaction and confidence maps. Based on the current
state information, the segmentation module gives suggested actions to refine previous segmentation
results by adjusting the segmentation probability of each voxel (agent). Further, the state information
will be utilized to evaluate the confidence of obtained actions through the confidence network, with a
confidence map as the output. The self-adaptive reward is designed through a self-adaptive weighting
scheme based on the action confidence evaluation (Section 3.4). The self-adaptive reward map can be
considered a value map with the same size as the original input image (each agent has its self-adaptive
reward), which can reflect the performance of the corresponding agent’s action. Besides, MECCA
will suggest some low confidence regions for the user to interact next (Section 3.5). Besides, the
confidence map can also be used to generate the simulated label by comparing it with actions, which
will be described in Section 3.6. The newly obtained hint map, the adjusted segmentation probability
result, and the original 3D image form a new state. The process described above is repeated until the
segmentation result meets requirements. To emphasize, during the testing stage in Figure 3(b), there
is no need to calculate the self-adaptive rewards, and at the same time, we only need the obtained
actions and suggested interaction areas.

3.1 MARL-driven Interactive Segmentation Framework

This study employs the multi-agent reinforcement learning structure to formulate the interactive
segmentation process and continuously give error-corrective actions at each interaction step. Let
x = (x1, · · · ,xN ) denotes the input image and xi denotes the i-th voxel of the image. In the setting of
MARL, every voxel xi is treated as an agent with its own refinement policy πi(ai (t), si (t)). At time step
t, agent xi gets action ai (t) from the segmentation network according to its current state si (t). After
taking the action, agent will receive a reward ri (t) according to the segmentation result.

The state si (t) for agent xi is concentrated by its voxel value bi , its current segmentation probability
pi

(t) and the value hi
(t) on the hint map. In particular, the segmentation probabilities of all agents are

initialized to 0.5 and range from 0 to 1. The hint map h(t) is transformed from the user’s hints which are
in the form of edge points. At each step, users click on some edges, which are not correctly predicted,
as hints. In order to let the model receive hint information, we generates a 3D Gaussian (with 8-voxels
kernel size) centered on each of the edge points as the hint map input to the segmentation network.

The action ai (t) for agent xi is sampled from its policy and used to adjust its previous segmentation
probability:

a
(t)
i ∼ πθ(a(t)

i |s
(t)
i ), (1)

p
(t+1)
i = clip(p(t)

i + a(t)
i ,0,1), (2)
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where ai (t) ∈ A and the clip operation modifies the probability to the interval [0,1]. The action set
A contains actions of different scales, allowing the agent to select the proper action. In our setting,
the A = {±0.1,±0.2,±0.4}. 0 is not used as one of the actions is mainly due to the following three
reasons: 1) in the early stages of the experiment, we found that using 0 as action will make the
algorithm converge slow, and it requires more than 2 times the number of interactions to achieve the
performance of baselines. Therefore, we remove 0 from the action space and encourage the agent to
explore in the early stage of training. Not only does the algorithm converge faster, but it also requires
fewer interactions; 2) in order to prevent the algorithm’s output from exceeding the valid range, we
have clipped the output action (this is also a common technique in reinforcement learning in order to
ensure that the output of the policy is in the valid range), as shown in the (2). 3) due to the existence of
the self-adaptive confidence calibration mechanism, the action output by the algorithm will generally
change in the direction of the correct label. Combined with the clipping technique used in the second
point, the algorithm can guarantee effectual output even if there is no 0-action.

The reward ri
(t) is the feedback (positive or negative) of the action and used to update the

refinement policy. The design of reward is a significant part of our algorithm, and we will introduce
it in details in Section 3.4.

3.2 Segmentation Network
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padding = (k,k,0), dilation = k
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Figure 4: The detailed architecture of the segmentation network. The confidence network architecture
is the same as the value branch of the segmentation network, but the parameters are not shared. |A|
represents the size of the action space.

The segmentation network adopts the P-Net, proposed in Wang et al. (2018b), as the backbone.
The segmentation network S has two heads: policy head and value head. Two heads share the first
three 3D convolutional blocks to extract low-level features. Each of the blocks has two convolution
layers and the size of the convolution kernel is fixed as 3×3 in all these convolution layers. All the
convolution kernels are dilated convolution, which can reduce the loss of the resolution. Both of the
heads have another two 3D convolutional blocks to extract specific high-level features. The detailed
architecture is shown in Figure 4. Specifically, the policy head is to output the policy πi(ai (t), si (t)),
which is the distribution of action probabilities under current state. By taking actions on different
scales, the probabilities will be dynamically adjusted. The value head is to estimate the value of the
current state, which evaluates how good the current state is and estimates the expected return:

V
(t)
i = E

[
R

(t)
i

∣∣∣si = s(t)i

]
= E

[∑T
k=tγ

t−1r
(t)
i

]
, (3)
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where T is the terminal time step in the interaction process, and γ is the discount factor. θv denotes
the parameters of the value head, and the gradient with respect to θv is:

dθv = ∇θvA
2
(
s(t), a(t)

)
, (4)

A
(
s(t), a(t)

)
=

∑T
k=tγ

k−t r̄(k) −V
(
s(t)

)
, (5)

where r(k) is the mean reward of all voxels at timestep k. A(s(t),a(t)) represents the advantage
function Mnih et al. (2016).

The goal of the policy head is to maximize the expected return by selecting proper actions in state
s(t). This study uses θp to denote the parameters of the policy head, and the gradient for θp is denoted
as

dθp = −∇θpπ
(
a(t)|s(t)

)
A
(
a(t), s(t)

)
. (6)

Usually, the policy head is updated after the value head.

3.3 Action Confidence Learning

As we mentioned in section 1, there will be some situations where the segmentation model mis-
understands or ignores the hint information. To some extent, these samples (or regions) with the
phenomenon of interactive misunderstanding are hard samples (or regions). Although these samples
may account for a small percentage of the dataset, they are critical for improving generalization and
robustness. The most important thing is finding a professional easy-or-hard representer Nie et al. (2019)
to identify them when interacting. Focal loss Lin et al. (2017) evaluates the hard-or-easy samples
through predicted probability. Nie et al. (2019) applies adversarial learning to train the easy-or-hard
representer. Both of them have their advantages, but all evaluate hard-or-easy samples based on the
final segmentation result. As such, these methods cannot be directly applied to interactive segmen-

tation. For example, if the model predicts the category probability of a voxel to be 0.8 (p(t)
i = 0.8),

and then takes an action a(t)
i = −0.1. The next prediction will be 0.7 after interaction (p(t+1)

i = 0.7). If

yi = 1, before and after results are all correctly predicted because p(t)
i and p(t+1)

i are all greater than 0.5.
While for interactive segmentation, the probability is changing in the wrong direction. This change is
what we called the interactive misunderstanding phenomenon and the formally definition is shown in
following.

Definition 1 (Interactive Misunderstanding). For a binary classification problem, the sign of the foreground
label y = 1 is denoted as positive, and the sign of the background label y = 0 is denoted as negative
accordingly. In an interactive medical image segmentation task (i.e. a voxel-wise binary classification
problem), for any voxel i, if the sign of the change of segmentation probability output by algorithm for
two consecutive interaction steps sign(4(p(i))) is not equal to sign(yi), then this phenomenon is defined as
interactive misunderstanding.

Our proposed confidence network learns the confidence of given actions to avoid misunderstand-
ing hint information and take accurate actions. We argue that confidential information can be used to
regularized action choices and suggest more efficient interaction. The confidence network structure
also uses P-Net Wang et al. (2018b) as the backbone.The confidence network contains six 3D convolu-
tional blocks. Each of the blocks has two convolution layers, and the size of the convolution kernel is
fixed as 3×3 in all these convolution layers. The detailed architecture is shown in Figure 4.

The confidence network is trained using the previous state and action as input and a confidence
map as output. The confidence network is optimized by minimizing the summation of binary cross-
entropy loss over actions (shown in (7)) at each time step t. Here we use C to denote the confidence
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network, wC denotes the parameters of the confidence network, while LBCE denotes the binary
cross-entropy loss:

LC(s(t), a(t);wC)

=LBCE(C(s(t), a(t)),g(t)) +LBCE(C(s(t),−a(t)),1− g(t)),
(7)

where

g(t) =
{

0 if a(t) ⊕ y(t) == 1,
1 otherwise ,

(8)

where g(t) means whether the direction of action is consistent with the label. a⊕ b is defined as that
the statement is only true if either a > 0 or b > 0, but not both.

One potential issue when training the confidence network is the imbalance of samples. Early in RL
training, the error rate of actions output by the segmentation network is very high, while most actions
are correct when the network gradually converges. Inspired by the training of the discriminator in
generative adversarial networks, this study introduces symmetric samples into the (7) to speed up
training. An obvious advantage is that it improves sample utilization efficiency because the confidence
network can know what a “bad sample” is and get a corresponding “good sample.”

3.4 Self-Adaptive Reward

Essentially, no matter applying focal loss or adversarial learning to the training of the segmentation
model, they all try to weigh these hard samples to prevent the model dominated by easy samples.
However, the interactive segmentation task differs from those fully automatic segmentation tasks
because the interactive segmentation model needs to cooperate with the user and understand the
user’s hint information. The action to refine the segmentation result shows how the segmentation
model understands hint information. Therefore, it is necessary to ensure that the hint information is
correctly understood and the correct action is taken.

Specifically, the previously described action-confidence learning can provide the segmentation
model with a confidence map to alleviate the interactive misunderstanding phenomenon. By this
confidence map, hard-or-easy samples can be better recognized as the confidence values for these
’hard regions’ are relatively lower than in other regions. This paper formulates this voxel-level
action-aware as the self-adaptive reward function, r(t), which is shown in (9), to adapt this mechanism
to the training of MARL:

r(t) =
∑N
i=1α (2− ci)β gain

(t)
i , (9)

where ci is the value on the confidence map. The setting of hyperparameters α and β are described in

Section 4.1. In addition, gain(t)
i denotes the relative gain of cross-entropy:

gain
(t)
i = X (t−1)

i −X (t)
i , (10)

X (t)
i = −yi log(p(t)

i )− (1− yi) log(1− p(t)
i ), (11)

where X (t)
i denotes the cross-entropy between current segmentation probability and ground truth.

If an agent gets a positive reward, its current action is good, and the refined segmentation result is
closer to the ground truth.

With the self-adaptive reward function in (9), the confidence value ci of these wrong actions is
lower, and they will be punished more when training our segmentation model.
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3.5 Interaction Guide

Another challenge for interactive image segmentation is that users usually need to decide where to
interact in many slices, which is very time-consuming, especially for 3D images. Our framework
also provides users with an interaction guide mechanism to save the user’s interaction time. After
refinement, our framework will suggest some possible areas for users to interact with next. Specifically,
our framework will filter out those areas with low action confidence and provides them for users (see
Figure 5). Firstly, the original 3D image will be segmented with super voxels; each super voxel can
be regarded as a group of voxels that share common characteristics. We use simple linear iterative
clustering (SLIC) Achanta et al. (2012) technique with spacing = [2,2,2], compactness = 0.1 to generate
supervoxels, and the number of initial supervoxels equals to 100 and gradually declines during the
refinement iterations for training and testing. Secondly, the proposed algorithm will compute the
mean action confidence in each super voxel and rank them in descending order. Finally, the top 5
super voxels will be marked and recommended to users. What users need to do is to select the best
interaction positions from these super voxels.

Figure 5: The illustration of interaction guide mechanism. The areas surrounded by the green lines
are advice regions provided to users, and the red point is the real hint information selected from
advice regions. The brighter the color (closer to yellow), the larger the positive value; on the contrary,
the darker the color (closer to black), the smaller the negative value.

3.6 Simulated Label Generation
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Figure 6: The illustration of simulated label generation. The simulated label generation mechanism
utilizes the confidence map and the action map to generate the simulated label. The confidence map
is used to calibrate the action, and the direction of the calibrated action is the simulated label of each
voxel.
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In medical imaging, the unlabeled data is much more than labeled data due to difficulties in
labeling medical images. To address this lack of annotations, the proposed algorithm leverages the
action confidence not only to improve the utilization efficiency of hint information but also to generate
a simulated label, shown in Figure 6, for unlabeled data. We define the simulated label as follow:

ŷ(t) =
{

1 if a(t) ⊕ c(t) == 1,
0 otherwise .

(12)

The ŷ(t) is the simulated voxel-level label generated from the confidence map and detailed illustration
is shown in Figure 6. Based on this mechanism, this study considers using these unlabeled data
to assist in training the segmentation network. Specifically, this study divides the dataset into two
parts during the training stage: the first part contains voxel-level annotation information, and the
second part contains only hint information during training. The labeled data is trained as above,
while the unlabeled data is trained with the simulated label. During the training stage, the backward
of gradients will be masked:

dθv =M∇θvA
(
s(t), a(t)

)2
, (13)

dθp =M∇π
(
a(t)|s(t)

)
A
(
a(t), s(t)

)
, (14)

where
M = I(max(c(t),1− c(t)) > δ). (15)

A
(
s(t),a(t)

)
is the advantage (which is defined in Mnih et al. (2016)) at time step t of taking a(t) in

condition of state s(t), which indicates the actual accumulated reward without being affected by the
state and reduces the variance of gradient. A mask, M, is used to constraint the training of unlabeled
data. The gradients of unlabeled data backward only when the action confidence exceeds the threshold
δ (which is gradually increased during the training process). Unlike traditional pseudo-label training,
the supervised signal does not come from the segmentation but the confidence network. These
filtered data with hint information are more valuable and provide more accurate supervised signals.
Generally, the training process with labeled and simulated labeled data is carried out simultaneously.
When using the simulated label generation mechanism, the pseudocode is shown in Algorithm 1.

4 Experiments and results

4.1 Dataset and Implementaion details

To comprehensively evaluate our proposed method, we apply our algorithm to four 3D medical image
datasets. All datasets are divided into two parts: Dtrain/Dtest. The details of these datasets are as
follows: 1) BraTS2015: Brain Tumor Segmentation Challenge 2015 Menze et al. (2015) contains
274(234/40) multiparametric MRI(Flair, T1, T1C, T2) from brain tumor patients. In our task, we only
use the Flair image and segment the whole brain tumor. 2) BraTS2020: Brain Tumor Segmentation
Challenge 2020 Menze et al. (2015) contains 285(235/50) multiparametric MRI(Flair, T1, T1C, T2)
from brain tumor patients. In our task, we only use the Flair image and segment the whole brain
tumor. 3) MM-WHS: Multi-Modality Whole Heart Segmentation Zhuang & Shen (2016) contains
24(20/4) multi-modality whole heart images covering the whole heart substructures. In our task,
this study chooses to segment the left atrium blood cavity. 4) Medical Segmentation Decathlon:
This is a generalisable 3D semantic segmentation datasets containing different organ segmentation
tasks Simpson et al. (2019). This study chooses to use the spleen and liver dataset, which provides
61(41/20) and 106(96/10) CT images respectively.
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Algorithm 1 MECCA: Interactive Medical Image Segmentation with Self-Adaptive Confidence Cali-
bration

1: Initialize the segmentation network S with θ;
2: Initialize the confidence network C with w;
3: for every sample in labeled datasets do
4: Set the segmentation probability of each voxel to 0.5;
5: s(0)← (x,p(0),h(0));
6: for every interaction time step t do
7: Take action a(t)← S(s(t));
8: Get reward r(t) and observe the next state s(t+1);
9: Compute the gradient of S via (4) and (6);

10: Compute the gradient of C via (7);
11: end for
12: Get a sample (x′ , y′) from unlabeled dataset;
13: Initialize the state: s′(0)← (x′ ,p′(0),h′(0));
14: for every interaction time step t do
15: Take action a′(t)← S(s′(t));
16: Generate the simulated label ŷ(t) by (12);
17: Observe the reward and next state s′(t+1);
18: Compute the gradient of S via (13) and (14).
19: end for
20: end for

We implement our method with PyTorch Paszke et al. (2019)∗. The segmentation and confidence
network are both initialized by Xavier Glorot & Bengio (2010) method, and learning rates are
initialized to 1e − 4. Other parameters are set as follow: T = 5, γ = 0.95, α = 0.8, β = 1. The mask M
ranges from 0.85 to 0.99 and ascents 0.00025 at every epoch. Adam Kingma & Ba (2015) is adopted as
the optimizer. The original image is cropped by the bounding box based on the ground truth with
a random extension in the range of 1 to 11 voxels. Each image is then resized and normalized to
55 ∗ 55 ∗ 30. The data is augmented by random flip and rotation. The proposed algorithm training
time with one Nvidia 2080ti GPU varies from 5 to 13 hours for different datasets.

4.2 Interaction Settings and Evaluation Metrics

During the process of interaction, this study adopts the edge points as the hint information for two
reasons. On the one hand, click operation saves more time than scribbles or other interactive ways.
On the other hand, edge points can provide more information about object edges as the bottleneck
of medical image segmentation is usually the inaccurate segmentation of object edges. Specifically,
this study provides each method with 45 points‡ during the whole interaction process. At every step,
users will click some edges which are not correctly predicted. This study generates a 3D Gaussian
(with 8-voxels kernel size) centered on each of the edge points as the hint map to let networks receive
hint information. Then the hint map will be input to the segmentation network as part of the state.
This study will use the Dice score and the average symmetric surface distance (ASSD) to evaluate the
performance of the segmentation result. According to these evaluation metrics, doctors can judge the
patient’s condition:

Dice(Sp,Sg ) = (2|Sp ∩ Sg |)/(|Sp|+ |Sg |),

∗The demo video of MECCA algorithm is available at https://bit.ly/mecca-demo-video.
‡Please refer to Section IV-C for details.
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Figure 7: Visualization of segmentation results by different methods. The green lines represent the
boundaries of ground truth, and the yellow lines represent the predictive boundaries.

where Sp,Sg denote the prediction of an algorithm and the ground truth respectively.

ASSD =
(∑

i∈Sad (i,Sb) +
∑
i∈Sbd (i,Sa)

)
/(|Sa|+ |Sb|),

where Sa and Sb represent the set of surface points of the segmentation result predicted by the
algorithm and the ground truth, respectively. d (i,Sb) is the shortest Euclidean distance between i and
Sb. The Dice score and ASSD in all tables are the average value of five test results of algorithms.
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Table 1: Dice scores at each interaction step by different methods. The value in parentheses represents
the improvement relative to the previous step.

Step 1 2 3 4 5

DeepIGeos
87.36 87.53 87.67 87.99 88.32

(+0.17) (+0.14) (+0.32) (+0.33)

InterCNN
87.21 88.59 88.54 88.39 88.26

(+1.38) (-0.04) (-0.16) (-0.12)

IteR-MRL
84.56 85.35 88.15 88.11 88.94

(+0.80) (+2.80) (-0.08) (+0.83)

MECCA
86.49 88.53 89.56 89.12 90.29

(+2.03) (+1.03) (-0.44) (+1.17)

Figure 8: Visualization of the performance improvement of different interactive medical segmentation
methods at the different interaction steps. All these testing results are performed on the BraTS2015
dataset.

4.3 Comparisons with State-of-the-art Methods

We compare MECCA with five state-of-the-art interactive segmentation methods: DeepIGeos Wang
et al. (2018b)§, InterCNN Bredell et al. (2018)¶, IteR-MRL Liao et al. (2020) and BS-IRIS Ma et al.
(2020). InterCNN is the multi-step version of DeepIGeos. We also introduce the SOTA method,
U-Net Ronneberger et al. (2015)‖, of medical image segmentation as a comparable baseline. Table 2
show the quantitative comparison of the six interactive segmentation methods on different datasets.
For a fair comparison, all CNN-based methods adopt the same network structure (P-Net), which is
proposed in Wang et al. (2018b). We can see that our proposed MECCA performs better than other
state-of-the-art methods on all three datasets. This study also visualizes the results in Figure 7, which
shows that our method is more accurate in edge segmentation.

To demonstrate that our method can take advantage of hint information more efficiently, this
study also compares the relative improvement of different methods at each interaction step. Due to
the different interaction ways of different methods, this study sets up a unified interaction process: all

§https://github.com/taigw/GeodisTK.
¶https://github.com/gbredell/interCNN.
‖https://github.com/liyun-lu/unet_and_vnet.
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Table 2: Quantitative comparison of 3D medical image datasets segmentation by different methods.
In particular, the P-Net is the method without hint information. Significant improvement (p-value
< 0.05) is marked in bold.

Methods BraTS2020 BraTS2015 MM-WHS Spleen Liver
Dice(%) ASSD(pixels) Dice(%) ASSD(pixels) Dice(%) ASSD(pixels) Dice(%) ASSD(pixels) Dice(%) ASSD(pixels)

P-Net 83.67±8.35 5.78±4.01 84.00±12.01 5.10±3.72 81.40±1.48 3.28±0.45 88.08±2.25 4.25±2.07 35.89±2.61 34.46±23.82
U-Net 84.72±10.42 4.09±3.89 84.66±11.25 6.17±4.69 80.96±1.65 3.72±0.39 87.95±2.87 5.12±1.09 56.00±1.93 22.38±22.42

DeepIGeos 88.54±.97 2.11±1.30 88.32±5.34 2.28±1.24 88.48±0.71 1.53±0.18 91.97±1.51 0.93±0.46 48.57±2.52 10.28±3.45
InterCNN 88.39±6.01 2.01±1.09 88.26±7.07 1.81±2.09 87.85±1.15 0.80±0.15 93.52±0.94 0.54±0.83 59.92±2.20 5.95±2.76
IteR-MRL 89.22±4.65 2.07±0.91 88.94±4.81 1.41±0.22 89.55±0.87 0.90±0.11 91.50±1.34 0.67±0.21 62.29±1.93 0.87±0.59
BS-IRIS 90.47±5.23 1.82±0.33 89.74±3.86 1.61±0.42 89.12±0.98 1.19±0.16 92.35±1.13 0.54±0.19 67.25±2.01 4.34±1.18
MECCA 91.02±5.86 1.15±0.20 90.29±5.07 1.50±0.33 90.39±5.89 0.80±0.01 94.96±1.44 0.30±0.16 71.46±1.41 2.36±0.99

these methods have 5 interaction steps and receive 25 identical points at the first step to generate
the initial segmentation result. After that, users will click 5 points at each step in the following 4
interaction steps (total of 25 + 5×4 = 45 points), and these methods will iteratively refine previous
segmentation results. The DeepIGeos method does not model the interaction sequence, and it
just combines current and previous hint information to refine the previous segmentation. The
experimental results are shown in Table 1 and Figure 8.

The results show that MECCA can perform better under the same amount of hint information and
improve more dice scores at most steps. Compared with CNN-based methods, the main advantage of
RL-based methods is that they can always keep notable improvement. There are two reasons for this
result. The first one is that RL-based methods model the whole interaction process to avoid interaction
conflict. The second reason is the relative entropy-based reward which encourages the model to
keep refining results. However, we should realize, the RL-based methods still can not guarantee the
high confidence of the corrective actions. As we can see in Figure 8, the performance of IteR-MRL
is not as good as other methods at the beginning, which is caused by numerous incorrect actions.
However, after learning the confidence of actions and applying the self-adaptive reward to update
the segmentation model, our proposed MECCA can perform well at each step and keep significantly
refining the result.

Figure 13(a) presents the visualization of the segmentation process of our proposed method. Since
our proposed method models the whole interaction process, Figure 13(a) shows the current interaction
step and its previous and next interaction steps. At each step, the second column is the confidence
map. This study finds that the confidence value of object edges is always lower than in other regions,
and these regions will receive more ‘punishment’ when rewards are generated. This study observes
that MECCA can gradually correct the edges around the user clicks (the red regions).

Table 3: The DICE of our method varies with the number of interactions under different difficult
cases.

Interaction times
1 2 3 4 5

The easy case 94.05 95.15 95.38 95.91 96.25
The hard case 41.45 47.38 65.78 77.79 79.37

Table 4: MECCA’s tolerance for inaccurate interaction points. Significant improvement (p-value
< 0.05) is marked in bold.

DICE (%) ASSD (pixels)
Disturbed Interactions 88.75±9.72 1.11±0.23

Non-Disturbed Interactions 90.29±5.07 1.50±0.33
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(a) DeepIGeos
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(b) InterCNN
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(c) IteR-MRL
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(d) MECCA

Figure 9: The results of different methods response to the same user interactions according to the
same initial segmentation on 4/10 testing instance, 7/30 channel, Liver 2 of MSD dataset.

Besides, we select the best and worst-performing samples from the test set for more analysis.
The results are shown in the Table 3. The improvement of easy samples through interaction is
not considerable, but the improvement of hard samples through interaction can reach twice as
much. However, significantly more interactions are required for hard samples to achieve the same
segmentation accuracy of easy samples. Moreover, it is very difficult and time-consuming to accurately
mark edge points in a real scene, and is less practical to ask user to click the accurate edge points.
To verify MECCA’s tolerance for inaccurate edge points, we conducted a robustness study under the
same settings as Table 2. Specifically, during each interaction in the training phase, random noises
are added to simulated edge points. The noise range is plus or minus 2 voxels in the three directions
of x, y, and z. In this way, the edge points used by the algorithm will be randomly selected from
64 (4 × 4 × 4) voxels within the real edge point neighborhood. This disturbance radius can cover
the edge ambiguity area in most cases. In the testing phase, we also adopted the same disturbance
operation, and the final results are shown in Table 4.

From the table, it can be seen that the perturbed edge points will make the DICE value of the
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(a) DeepIGeos
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(b) InterCNN
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(c) IteR-MRL
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(d) MECCA

Figure 10: The results of different methods response to the same user interactions according to the
same initial segmentation on 6/10 testing instance, 18/30 channel, Liver 2 of MSD dataset.

algorithm drop and have a more considerable variance. However, the maximum value of DICE exceeds
the accurate edge points. The perturbed edge points can even exceed the performance of accurate edge
points in the ASSD value. We believe that there may be two reasons for the above phenomenon. First,
MECCA uses adaptive confidence calibration to improve the information-misunderstanding of the
iterative algorithm, but it also makes the algorithm more “conservative”. The perturbed edge point
information may exceed the actual object boundary, which can make the segmentation effect of our
method better or more “radical”; Second, perturbing the interactive information during the training
phase can enable the reinforcement learning algorithm to explore the environment (medical images).
Existing SOTA reinforcement learning algorithms generally impose entropy constraints on the policy,
enhance the randomness of the policy, and encourage exploration. Moreover, our perturbation of
interactive information will indirectly affect the policy of the algorithm. In a word, MECCA has good
robustness to inaccurate edge points.

Finally, we show how different methods respond to the same user interactions according to the
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(a) DeepIGeos
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(b) InterCNN

0 20 40 60 80 100

0

20

40

60

80

100

0

0 20 40 60 80 100

0

20

40

60

80

100

1

0 20 40 60 80 100

0

20

40

60

80

100

2

0 20 40 60 80 100

0

20

40

60

80

100

3

0 20 40 60 80 100

0

20

40

60

80

100

4

(c) IteR-MRL
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(d) MECCA

Figure 11: The results of different methods response to the same user interactions according to the
same initial segmentation on 7/10 testing instance, 10/30 channel, Liver 2 of MSD dataset.

same initial segmentation, especially for hard cases. We selected some images with poor performance
in baselines or MECCA as the research objects. Specifically, the generation mechanism of the same
user interactions is described as following. Total 45 hint points are randomly selected from the
intersection area of the boundary of the foreground object and the error region of the initialization
segmentation. Then, these 45 points are allocated to the 5 interactive steps of all methods according
to the combination of 25, 5, 5, 5, and 5. The number of hint points used in each interactive step is
the same as that of all methods during training and testing. The results are shown in Figure 9-11. It
can be seen from the results that MECCA can use the hint points information stably in all cases. The
interactive misunderstanding phenomenon arises in other methods. These method either ignore the
expert’s correction information, or even be adversely affected by correction information as in figures.
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Figure 12: Visualization of the self-adaptive mask, the Error region mask and the Focal mask. All
masks are obtained at the first interaction step. The brighter the color (closer to yellow), the larger the
positive value; on the contrary, the darker the color (closer to black), the smaller the negative value.

4.4 Comparison of Different Weighted Rewards

One main contribution of our work is that the self-adaptive reward mechanism is further proposed
based on the confidence map. This mechanism makes different actions have different feedback levels
so that the segmentation network can identify wrong actions as much as possible. To measure the
impact of different reward weighting ways on the segmentation result, this study compares MECCA
with the original IteR-MRL without weighting reward, the Focal-Reward IteR-MRL (Focal-IteR-MRL),
and the one with weighted reward in segmentation error regions (Err-IteR-MRL). The Focal-Reward
IteR-MRL adapt the idea of Focal loss Lin et al. (2017):

FocalReward
(t)
i = X (t−1)

i −X (t)
i , (16)

where

X (t)
i =

 −(1− pi)yi log(p(t)
i ) if yi = 1,

−pi(1− yi) log(1− p(t)
i ) if yi = 0.

(17)

The reward function of Err-IteR-MARL is a linear scaling of reward of IteR-MARL:

ErrReward(t)
i =

(1 +λi)gain(t)
i , if voxel i is misclassified,

gain(t)
i , otherwise,

(18)

where λi is a positive real number hyperparameter. The performance of different weighting rewards
is shown in Figure 13(b). Action-based reward weighting methods are more suitable for interactive
segmentation since the improvement of our proposed method is more notable than other methods.
Also, this study visualizes different masks that weigh the primary reward in Figure 12. As we can see,
the focal mask pays more attention to regions with low prediction probabilities, and the errors region
mask contains all regions segmented incorrectly in the previous result. It is not enough for the focal
mask to obtain more structured information by only considering the probability of prediction. As
such, the performance of Focal-IteR-MRL is erratic, even the poorest on the left atrium dataset. The
performance of Err-IteR-MRL is more stable than other methods, but the improvement is not notable.
It is because that the weighting way of Err-IteR-MRL is based on the segmentation result while the
refinement process of the interactive image segmentation is based on actions.

4.5 Weakly-supervised Interactive Segmentation

As mentioned in Section 3.6, MECCA can reduce the dependence on voxel-level annotations of
images by using the simulated label generated from the action confidence map. This study validates
Algorithm 1 on the BraTS2015 dataset by randomly selecting different proportions of samples as
fully labeled data and using the rest of the training images as unlabeled data, which only provided
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(a)

(b)

Figure 13: (a) The segmentation process of MECCA. At each step, the first column is the action map,
the second column is the confidence map, and the third column is the segmentation result with the
user’s hint information.(b) Average Dice scores of methods with different weighting rewards. The
reward function of IteR-MRL is not weighted; the reward function of Focal-IteR-MRL is weighted
via (16), the reward function of Err-IteR-MRL is weighted in segmentation error regions, and the the
reward function of MECCA is weighted through action confidence. The brighter the color (closer
to yellow), the larger the positive value; on the contrary, the darker the color (closer to black), the
smaller the negative value.

hint information when interaction. This study compares MECCA against the P-Net (without hint),
DeepIGeos, and IteR-MRL Liao et al. (2020). However, only MECCA uses unlabeled data, and the
remaining three baselines only use a fixed proportion of labeled data. This does not fully demonstrate
the performance of MECCA on semi-supervised problems. For this reason, we additionally introduce
a state-of-the-art semi-supervised method UA-MT Yu et al. (2019). Table 5 shows the results of
different methods. MECCA achieves a Dice score of 87.14% with only 12.5% labeled data, and it
performs better than the other methods with 25% labeled data.

Since UA-MT is not an interactive segmentation algorithm, its absolute performance is worse than
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Figure 14: Qualitative segmentation results of MECCA for BraTS2015 validation set. The first column
shows the cropped original images. The second to fifth columns respectively show: the result of
supervised learning only using 12.5% of labeled data, the results of weakly-supervised learning
using 12.5% labeled and other unlabelled images, the result of supervised learning only using 25%
of labeled data, the results of weakly-supervised learning using 25% labeled and other unlabelled
images. Both supervised learning and weakly supervised learning is based on our proposed method.

interactive segmentation baselines but better than the non-interactive method P-Net. In addition,
it can be seen from the last column of results that UA-MT has the most negligible performance
loss on different proportions of labeled data. After MECCA introduces the simulated label gener-
ation mechanism, the performance loss can also be controlled at a similar magnitude to UA-MT.
Interestingly, DeepIGeos can maintain a good performance loss without using a semi-supervised
learning mechanism. Combined with the performance loss of IteR-MRL, we can conclude that in the
semi-supervised interactive segmentation task, the interactive misunderstanding phenomenon will
exacerbate the performance loss caused by the missing data. DeepIGeos and MECCA alleviate the
interactive misunderstanding phenomenon through hard constraints and self-adaptive confidence
calibration, respectively, so both of them can achieve better results under semi-supervised settings.
However, it is worth mentioning that DeepIGeos does not consider multi-step interactions and the re-
lationship between consecutive interactions. It cannot fully utilize long-term interactive information,
so it has a large gap with MECCA in absolute performance.

Figure 14 shows the qualitative segmentation results of our method trained with different data
sizes. It shows that the model trained with 12.5% labeled data can only capture the main region of the
tumor. However, the model is unable to distinguish the infiltration areas of the tumor. For instance,
the boundaries of tumors in the figure are hard to distinguish as it is more similar to these healthy
regions. In this case, the models trained with little data tend to ignore these boundary regions of the
tumor, while the model trained with both labeled data and unlabeled data can get more smooth and
accurate boundaries. This phenomenon is mainly due to the distribution of the training set is not
consistent with the validation set. The main advantage of the model trained with both labeled and
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Table 5: Quantitative comparison between MECCA and other methods on BraTS2015 Dataset of
different sizes. Significant improvement (p-value < 0.05) is marked in bold.

Data amount 1/8 1/4 1/3 1/2 1/1 4(1/8,1/1)

P-Net 75.86 80.83 80.88 83.02 84.00 10.73%
DeepIGeos 85.50 85.90 87.70 87.60 88.32 3.30%
IteR-MRL 84.36 86.54 87.38 88.66 88.94 5.07%
UA-MT 83.08 84.47 84.62 84.39 84.66 1.90%
MECCA 87.14 88.23 88.31 89.17 90.29 3.60%

unlabeled data is that it can minimize the gap between training and validation data.

Table 6: DICE of the algorithm under different number of interactions and percentage of labeled data.

% Labeled Data Interaction Steps
3 4 5 6 7

25% 84.03 86.18 88.23 87.32 88.24
33% 85.32 87.60 88.31 87.99 88.53
50% 85.39 87.07 89.17 88.93 89.13

100% 89.93 90.40 90.29 89.85 90.79

We additionally test MECCA’s performance under different interaction times and the percentage
of labeled data, and the results are shown in Table 6. Based on the experimental results, we can
obtain the following conclusions: 1) if there is enough labeled data, MECCA can achieve good results
after a few interactions; 2) the number of interactions required by MECCA to achieve the same
performance is roughly inversely proportional to the number of labeled data; 3) although MECCA
requires more interactions (about 2-3 times the number of interactions) when only part of the labeled
data is available, it can approach the algorithm’s performance trained with all labeled data in the end.

4.6 Ablation Study

Table 7: Ablation study of our proposed algorithm on the BraTS2015 dataset with 25% labeled data
and 75% unlabeled data . Significant improvement (p-value ¡ 0.05) is marked in bold.

Self-
adaptive
reward

Interaction
guide

Simulated
labels
generation

Dice(%)

86.54
X 87.21

X 86.56
X 88.01

X X 87.24
X X X 88.23

Table 7 and 8 shows the impact of different mechanisms to the MECCA. It is clear that the
stimulative labels generation mechanism and self-adaptive reward mechanism significantly improve
the algorithm’s performance. The stimulative labels generation mechanism can achieve a 1.47% and

23



Table 8: Ablation study of our proposed algorithm on the Liver 2 dataset of MSD with 25% labeled
data and 75% unlabeled data. Significant improvement (p-value < 0.05) is marked in bold.

Self-
adaptive
reward

Interaction
guide

Simulated
labels
generation

Dice(%)

66.43
X 67.45

X 66.56
X 67.93

X X 67.59
X X X 69.99

3.56% gain over the initial algorithm without any mechanisms for the Brats2015 and Liver 2 dataset,
respectively. The main reason for this significant improvement is the utilization of these unlabeled
data.

Table 9: Quantitative comparison of interactive segmentation methods in computational and interac-
tion time.

Methods Total inference time per iteration Interaction time per iteration

DeepIGeos 510ms 226ms
InterCNN 532ms 237ms
IteR-MRL 869ms 235ms
BS-IRIS 990ms 250ms
MECCA 631ms 123ms

Table 10: Quantitative comparison of interactive segmentation methods in interaction time on
realistic segmentation platform operated by experts. Demo video of MECCA is available at https:
//bit.ly/mecca-demo-video.

Interaction Time (Second, Real World)
Interaction Step(s) 1 (25 points) 2 (5 points) 3 (5 points) 4 (5 points) 5 (5 points)

DeepIGeos 70 15 15 8 8
InterCNN 76 19 18 8 7
IteR-MRL 75 17 17 8 8
BS-IRIS 80 20 20 11 10
MECCA 41 12 11 5 5

Table 9 shows the comparison of interactive segmentation methods in computational and in-
teraction time. The result shows that the MECCA only takes half the time of other methods when
performing an interaction. The main contribution to the reduction of interaction time is the interac-
tion guide mechanism mentioned in Section 3.5. Furthermore, to explore the efficiency of MECCA
in authentic tasks, we designed an interactive software platform. We asked oncologists to use it for
natural interactive segmentation, and the results are in Table 10. It can be seen from the results that
the MECCA algorithm also takes only about half of the time of the baselines due to the interaction
guidance. In addition, as the segmentation results become more and more accurate, the interaction
time required gradually decreases.
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5 Conclusion

This paper presents a novel action-based confidence learning method for interactive 3D image
segmentation. Specifically, this paper proposes to learn the confidence of actions that continuously
refine the segmentation result during the interaction process so that hint information can be used
more effectively. Based on this, the self-adaptive reward is proposed for the segmentation module,
which can prevent the interactive misunderstanding phenomenon during the interaction and help
reduce the time cost of interaction by providing users with the advice regions to interact next. Besides,
the confidence map can also replace the ground truth to generate feedback for the unlabeled samples
for the segmentation module. These samples without voxel-level annotations can also be used to
train our model. By integrating these components, MECCA is demonstrated to medical segmentation
efficiently via less voxel-level annotated samples.
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