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ABSTRACT

Crowd counting has important applications in public safety and pandemic control. A robust and
practical crowd counting system has to be capable of continuously learning with the new incoming
domain data in real-world scenarios instead of fitting one domain only. Off-the-shelf methods have
some drawbacks when handling multiple domains: (1) the models will achieve limited performance
(even drop dramatically) among old domains after training images from new domains due to the
discrepancies of intrinsic data distributions from various domains, which is called catastrophic
forgetting; (2) the well-trained model in a specific domain achieves imperfect performance among
other unseen domains because of the domain shift; and (3) it leads to linearly increasing storage
overhead, either mixing all the data for training or simply training dozens of separate models for
different domains when new ones are available. To overcome these issues, we investigated a new
crowd counting task in the incremental domains training setting called Lifelong Crowd Counting.
Its goal is to alleviate the catastrophic forgetting and improve the generalization ability using a
single model updated by the incremental domains. Specifically, we propose a self-distillation
learning framework as a benchmark (Forget Less, Count Better, or FLCB) for lifelong crowd
counting, which helps the model sustainably leverage previous meaningful knowledge for better
crowd counting to mitigate the forgetting when the new data arrive. In addition, a new quantitative
metric, normalized backward transfer (nBwT), is developed to evaluate the forgetting degree of the
model in the lifelong learning process. Extensive experimental results demonstrate the superiority of
our proposed benchmark in achieving a low catastrophic forgetting degree and strong generalization
ability.

1 Introduction

Crowd counting is to predict the number of people in an image or a video sequence. Accurate crowd counting for
crowded scenes has important applications such as traffic control, preventing stampedes from occurring, and estimating
participation in large public events like parades. For example, during a pandemic, authorities may need to maintain
social distancing for public spaces to minimize the risk of infection. Thus, crowd counting systems are usually deployed
in multiple diverse scenarios, such as malls, museums, squares, and public squares. For one site, the running system is
expected to continually handle the non-stationary data with different densities, illumination, occlusion, and various
head scales. For multiple sites, the system should also consider dozens of scenes and perspective information.

As data are increasingly produced and labeling is time-consuming, the new domain data available for training are
usually collected and labeled incrementally. We may ask: how to sustainably handle the crowd counting problem
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Figure 1: The conceptual differences of four training paradigms: (a) Directly training an individual model for each
dataset. (b) Training a unified model by mixing all datasets from different domains. (c) Leveraging previous data or
models to improve the performance on the target domain dataset. (d) Ours: lifelong learning with incremental domains
to improve the performance among all domains. In (c), the dotted lines indicate that the past domain data may be used
repeatedly to improve the performance in the target domain dataset. In (d), our proposed FLCB model does not replay
any previous domain data and evaluates all domain datasets at the training stage. Without storing previous domain data,
our proposed lifelong model (FLCB) itself can still sustainably handle the crowd counting problem among multiple
domains, being updated by the new available domain dataset only.

among multiple domains using a single model when the newly available domain data arrive? We try to find the most
potential solution to this question from the following aspects.

Currently, most crowd counting approaches [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] concentrate on training an
independent model for each single domain dataset. They heavily rely on the i.i.d. assumption that images from both
the training set and test set are independently and identically distributed. Although producing promising counting
performance in the corresponding domain, such a training strategy, shown in Figure 1(a), has drawbacks in dealing
with multiple and incremental new datasets, which are common in the real world; e.g., when limited labeled data from
a new site are available before applying the model at the site. One drawback is that these separately trained models
often have low generalization ability when dealing with new, unseen domain data due to the domain shift evidenced in
Table 1. Another is that saving multiple different sets of trained parameters from distinct domains for inference is not
economical when deploying them to hundreds of thousands of real-world sites. Training a shared and universal model
from scratch by mixing all the data (also known as joint training) or sequential training for each new incoming dataset
may improve the performance on the unseen domains, shown in Figure 1(b) and (c). Nevertheless, both paradigms still
have some limitations respectively. The joint training strategy [15, 16] requires storing all training data from previous
domains when the newly available one arrives, leading to lengthy training time and high storage overhead. Meanwhile,
the sequential training strategy will dramatically deteriorate the model’s performance among previous domains after
training the new domain data, i.e., catastrophic forgetting.

To overcome the aforementioned forgetting, generalization, and storage overhead issues, inspired by the learning
mechanism of mammals, we investigate a new task of crowd counting in this paper, termed Lifelong Crowd Counting,
which can sustainably learn with the new domain data and concurrently alleviate the catastrophic forgetting and
performance drop among preceding domains under the domain-incremental training settings, as shown in Figure 1(d).
One thing to be noted is that the goal of the proposed lifelong crowd counting task is different from that of previous
cross-domain and multi-domain crowd counting tasks [17, 16, 15]. During the whole lifelong learning process with
incremental training data, the goal is to maximize the overall performance among all domains—previously trained,
newly arrived, and unseen—instead of only focusing on the target domain performance. We consider the trade-off
between the forgetting degree and the generalization ability of the models. In particular, we develop a novel benchmark
of domain-incremental lifelong crowd counting with the help of knowledge self-distillation techniques. The proposed
benchmark has both strong generalization ability on unseen domains and low forgetting degrees among seen domains.
This helps the model have the sustainable counting capability when new data arrive in the future. In our experiments,
we utilize four fruitful crowd counting backbones, CSRNet [9], SFANet [18], DM-Count [19], and DKPNet [17] to
illustrate the effectiveness and superiority of our proposed framework.

The contributions of this work can be summarized as follows.

• To the best of our knowledge, this is the first work to investigate lifelong crowd counting by considering the
catastrophic forgetting and generalization ability issues. Our method may serve as a benchmark for further
research in the lifelong crowd counting community.

• We design a Balanced Domain Forgetting loss function (BDFLoss) to prevent the model from dramatically
forgetting the previous knowledge when being trained on the newly arrived crowd counting dataset.
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• We propose a new quantitative metric normalized Backward Transfer (nBwT) of lifelong crowd counting, to
measure the forgetting degree of trained models among seen data domains. We treat the Mean Absolute Error
(MAE) as the criteria for evaluating model generalization on the unseen data domain.

• Extensive experiments indicate that our proposed method has a lower degree of forgetting compared with
sequential training, and outperforms the joint training strategy on the unseen domain with a much lower MAE
score and time and space complexity.

Table 1: The MAE (mean absolute error) scores of our reproduced DM-Count [19] model separately trained in a single
dataset and tested over other datasets. It shows the obvious performance drop due to the domain discrepancy.

Train
Test SHA SHB QNRF NWPU

SHA 59.7 19.0 143.3 161.1
SHB 124.6 7.0 209.9 179.1
QNRF 69.6 14.0 85.6 124.8
NWPU 74.7 11.7 100.9 88.4

2 Related Work

2.1 Crowd counting

Traditional detection-based and regression-based methods extract the handcrafted features such as SIFT [20] and
HoG [21] to detect the individual heads [21, 22, 23, 24] or directly regress the count number [25]. Nevertheless, these
models cannot learn the spatial information of people distribution to make accurate predictions in highly congested
scenes. Most of the latest crowd counting approaches are built upon deep learning methods to estimate a density
map for a given image. Many researchers design various architectures like fully convolutional networks [26, 27],
multi-column networks [1, 2, 3, 28], scale aggregation or scale pyramid networks [4, 5, 6, 7, 29, 30], and attention
mechanisms [31, 32, 33, 34, 18] to extract the multi-scale feature representations to resolve scale variation and
non-uniform distribution issues. CSRNet [9] points out the multi-scale feature redundancies among multi-branch
architectures and proposes a new deeper single-column convolutional neural networks (CNN) with dilated convolutions
to capture different receptive fields. ADCNet [11] extends the discrete dilated ratio (integer value) into a continuous
value to match the large scale variation and self-correct the density map using the Expectation-Maximization (EM)
algorithm. Local region modeling methods [35, 36] also help correct the local information. Most off-the-shelf crowd
counting models focus on single domain learning. The models will be retrained when the new domain data arrive. In
our study, we focus on using a single model to handle multiple incremental datasets for crowd counting.

2.2 Cross-domain / multi-domain learning

Many researchers exploit the cross-domain problems [37, 38, 39, 40, 41] in crowd counting, including cross-scene [26],
cross-view [42], and cross-modal [43]. The Adversarial Scoring Network [38] is applied to adapt to the target domain
from coarse to fine granularity. In addition, cross-domain features can be extracted by the message-passing mechanisms
based on a graph neural network [44]. A semantic extractor [45] has been designed to capture the semantic consistency
between the source domain and target domain to enhance the adapted model. A large synthetic dataset (GCC) [41] has
been released to study the transferability from synthetic data to real-world data. Quite a few researchers [46, 47, 48]
also investigated similar tasks like vehicle counting based on the same architectures from crowd counting. Learning
with multiple domains simultaneously [15, 16, 17] has also been preliminarily explored, and is required to mix all the
data for training at the same time. DCANet [16] proposed a channel attention-guided multi-dilation module to assist the
model in learning a domain-invariant representation while DKPNet [17] propagated the domain-specific knowledge
with the help of variational attention techniques. Ma et al. [15] developed a scale alignment component to learn an
adaptive rescaling factor for each image patch for better crowd counting. In reality, such cross-domain approaches
needed a careful alignment module design and placed more emphasis on the target domain performance only, while the
multi-domain learning methods required more storage overheads to save old domain data. These methods often achieve
limited performance in previous (source) domains. In contrast, our proposed lifelong crowd counting task is based on
training the domains incrementally (one by one) using a single model, alleviating catastrophic performance drop of the
previous domains (forget less), and maintaining the overall performance in all domains (count better). The lifelong
crowd counting system can mimic the biological brain to learn sustainably in its lifetime inspired by the learning
mechanisms of mammals, i.e., integrating the new knowledge increasingly while maintaining previous memories.

3



2.3 Lifelong learning

Lifelong learning attempts to alleviate the catastrophic forgetting issues and enhance the model generalization ability
when a system increasingly faces non-stationary data. The mainstream strategies are applied to image classifica-
tion [49, 50, 51, 52, 53] and numerical prediction tasks [54], which can be categorized into four groups: model-growth
approaches [55], rehearsal-based techniques [52, 50], regularization [49, 50] and distillation mechanisms [51]. Specif-
ically speaking, the model-growth (e.g. PNN [55]) and rehearsal-based methods (e.g. GEM [52]) require more
computational and memory costs because they either instantiate a new network or replay old data when learning the new
classes or tasks. LwF [51] is a combination of the distillation networks and fine-tuning to boost the overall performance.
However, the aforementioned classification-based lifelong learning approaches can not migrate to the crowd counting
task directly because counting is an open-set problem [47] by nature whose value ranges from zero to positive infinity
in theory. Latent feature representations with general visual knowledge together with high-level semantic information
at the output layer play a crucial role in such dense prediction tasks. Therefore, in this paper, we propose a simple
yet effective self-distillation loss at both the feature-level and output-level for lifelong crowd counting to alleviate the
catastrophic forgetting with a low time and space complexity.

3 Methodology

In this section, we will first introduce concrete formalized definitions of typical crowd counting and the proposed
lifelong crowd counting. After that, we will describe the details of our proposed domain-incremental self-distillation
lifelong crowd counting benchmark including model architectures and the proposed loss function.

3.1 Problem formulation

3.1.1 Typical crowd counting

The typical crowd counting task can be regarded as a density map regression problem, training and validating in a
single domain, as shown in Figure 1(a). Suppose one dataset DM = 〈XM, YM〉 containsM training images and the
corresponding annotations. Then, a binary map B is easy to obtain given the coordinates of pedestrian heads per image,
which can be formally defined as follows:

B(i,j) =

{
1, head center (i, j)
0, otherwise (1)

The ground truth density map Y is generated by employing the Gaussian kernel Gσ to smooth the binary map.

Y = Gσ ~ B. (2)

Here, ‘~’ represents the convolution operation. Then, the typical crowd counting is transformed to regress the generated
density maps. The pixel-level L2 loss is the most commonly used one to optimize the model F(·; θ) with the parameter
θ by minimizing the difference between predictions and ground truths:

min
θ

1

M

M∑
m=1

L2(F(Xm; θ), Ym) . (3)

3.1.2 Lifelong crowd counting

We propose a new, challenging yet practical crowd counting task, i.e., lifelong crowd counting, for investigating the
catastrophic forgetting and model generalization problems in training domain-incremental datasets. Different from
previous works that only maintained good performance in a single target domain, the lifelong crowd counting model
could be sustainably optimized over the new incoming datasets to maximize the performance among all domains.

For convenience, we first define some key notations as follows and introduce the details of the lifelong crowd counting
process. A sequence of N domain datasets {D1,D2, . . . ,DN } is prepared to train the lifelong crowd counter G∗(·;ψ)

with parameters ψ one by one. X(t)
Mt

and Y (t)
Mt

are the training images and corresponding ground truth density maps
withMt samples from the t-th domain Dt, respectively. Here, we assume different datasets are coming from different
domains with their own distinct data distributions, i.e. p(X(i)) 6= p(X(j)), i 6= j because they are normally captured
from different cameras or different scenarios like streets, museums, and gymnasiums. The model is initially trained
from scratch over the first domain and then trained and optimized by the rest of the other datasets sequentially. The
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optimal object ψ∗ is defined as follows:

arg min
ψ

N∑
t=1

E
(X

(t)
Mt

,Y
(t)
Mt

)
[L(G(t)(X(t)

Mt
;ψ), Y

(t)
Mt

)], (4)

where G(t)(·;ψ) represents the t-th model for training t-th dataset X(t)
Mt

withMt samples. The ultimate model is
expected to achieve decent performance among seen and unseen domains. What deserves to be pointed out is that
lifelong crowd counting is distinct from cross-domain tasks with different optimization objectives, as well as the training
settings. In lifelong crowd counting, the goal is to maximize the performance on both seen and unseen domains instead
of maximizing the target domain performance only. Especially when the training data from previous domains are absent
or unavailable, lifelong crowd counters could still work efficiently because they are trained and updated only by the
newly-arrived domain dataset one after another.

Teacher Model (fixed parameters)

Student Model (learnable parameters)

BDFLoss
Ground Truth

Feature-level
Distillation

Distillation Loss

Estimation Loss

Output-level
Distillation

···

New Domain Images

Figure 2: The overall architecture of our proposed domain-incremental self-distillation learning benchmark (FLCB).

3.2 Overview of our proposed framework

Our proposed framework focuses on tackling the catastrophic forgetting and generalization issues under the circum-
stances of domain-incremental training settings. In this paper, we simply regard different crowd counting datasets as
different domains because the statistics (mean and variance) of people counts are different. The detailed explanations
of the domain concept can be seen in Appendix A. To be more specific, we propose a novel domain-incremental
self-distillation lifelong crowd counting benchmark for sustainable learning with newly arrived data and without an
obvious performance drop among previous domains. The key factor is how to effectively leverage the previously learned
meaningful knowledge when training over the data from a new domain for better crowd counting. Inspired by the
knowledge distillation technique, we expect to use a well-trained model among old domains (teacher model) to guide
the currently-optimized model with new domain data (student model) to mitigate performance drop among previous
domains, considering that the old data may be unavailable. The overview of our proposed framework is illustrated in
Figure 2. We design a self-distillation mechanism plugged into both feature-level and output-level layers of the network
to constrain the output distribution similarities between the teacher and student models, which can reuse the learned
knowledge when facing the new domain data without storing and training the old data repeatedly. More details will be
discussed in Section 3.3. The ultimate model is expected to be deployed to an arbitrary domain to estimate the people
counts.

For better understanding, the overall training pipeline is described in detail as shown in Algorithm 1. A queue Q collects
N increasingly-arrived datasets from different domains to be trained one by one. First, we initialize the first model
G(1)(·;ψ) by training the first available dataset D1 in the queue Q. Another queue P is prepared for future evaluation,
which receives the test set popped from Q. After that, the model will be trained and optimized by the subsequent
datasets from D2 to DN , repeating the following main steps until the queue Q is empty:

(1) Pop the t-th dataset Dt from the queue Q for training.

(2) Copy the parameters of the last well-trained model G(t−1) to the model F(·; θ) as a teacher network for
distillation.
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(3) Train the current t-th model G(t)(·;ψ) over the t-th dataset Dt via the self-distillation loss we proposed.

(4) Push the t-th dataset Dt into the queue P for evaluation when the model converges.

Note that the parameters θ of the model F(·; θ) are frozen during the lifelong training process. The fixed model is
regarded as a teacher network to guide the current student network G(t)(·;ψ) with learnable parameters ψ to remember
old meaningful knowledge for better crowd counting. Eventually, we obtain the final model with the best parameters
ψ∗, which can continue to be trained by using our proposed framework when the new labeled data are ready in the
future. Because we do need to store any previously-seen training data to be replayed to train our model, the time and
space complexity is approximately O(N ) and Ω(M) which is superior to O(N 2) and Ω(N ×M) of joint training.
M is the maximum ofMi. Although the distillation mechanism is required to save an additional model, its storage
overhead is negligible compared to storing the entire dataset for retraining.

Algorithm 1 FLCB training pipeline.
Notations:
X

(t)
Mt

: The t-th training dataset withMt samples.

Y
(t)
Mt

: The corresponding density maps of X(t)
Mt

.
M1,M2, ...,MN : Samples of each dataset.
P : A queue containing previously seen datasets.
Q : A queue containing future unseen datasets.
F (t)(·; θ) : Teacher model with fixed params θ at t-th step.
G(t)(·;ψ) : Student model with updated params ψ at t-th step.

Input: {D1,D2, ...,DN }: A sequence of N domain datasets, Di = 〈X(i)
Mi

, Y
(i)
Mi
〉.

Output: The optimal model parameter ψ∗.
1: P ← ∅;
2: Q← {D1,D2, . . . ,DN };
3: 〈X(1)

M1
, Y

(1)
M1
〉 ← Q.top();

4: Q.pop();
5: Train G(1)(X(1)

M1
;ψ)

6: ψ∗ ← arg minψ L
(1)
count(·;ψ)

7: P.push(X(1))
8: for t = 2, 3, . . . ,N do
9: F (t−1)(·; θ)← G(t)(·;ψ∗)

10: 〈X(t)
Mt

, Y
(t)
Mt
〉 ← Q.top()

11: Train G(t)(X(t)
Mt

;ψ)

12: ψ∗ ← arg minψ L
(t)
count(·;ψ) + λL(t)

distill(·; θ, ψ)

13: P.push(〈X(t)
Mt

, Y
(t)
Mt
〉)

14: Q.pop()
15: Test all seen datasets in P with G(t)(·;ψ∗)
16: end for
17: Return ψ∗

// Time Complexity: O(N )
// Space Complexity: Ω(M)
//M = max{Mi|i = 1, 2, ...,N}

3.3 Balanced domain forgetting loss

To balance the model plasticity (the ability to learn new data) and stability (the ability to remember previous knowledge),
we propose a novel balanced domain forgetting loss function, i.e., BDFLoss, mainly consisting of counting loss and
self-distillation loss. We integrate the optimal transport loss in our basic L1 counting loss in this study because it has
tighter generalization error bounds [19]. L1 counting loss is defined as follows:

L1(Y, Ŷ) =
1

M

M∑
i=1

|Yi − Ŷi|, (5)
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where L1(·, ·) loss computes the difference between the predictions and actual counts.

The optimal transport loss LOT is used to minimize the distribution discrepancy between the predicted density maps and
the point-annotated binary maps, and is defined as follows:

LOT(Y, Ŷ) =Wc

(
Y
||Y||1 ,

Ŷ
||Ŷ||1

; C
)

=
〈
α∗, Y

||Y||1

〉
+
〈
β∗, Ŷ

||Ŷ||1

〉
,

(6)

whereWc(µ, v; C) is the optimal transport loss with the transport cost C. It aims at minimizing the cost to transform
one probability distribution µ to another v. C is defined as the quadratic transport cost here. α∗ and β∗ are the optimal
solutions of its dual problem as follows:

max
α,β
〈α, µ〉+ 〈β, v〉 s.t. αi + βj ≤ Cij ,∀i, j. (7)

To improve the approximation of the low-density regions of images, we also embed a normalized regularization item Lr,
defined as follows:

Lr(Y, Ŷ) =
1

M

M∑
i=1

1

2

∥∥∥ Yi

||Yi||1 −
Ŷi

||Ŷi||1

∥∥∥
1
. (8)

Thus, the total count loss is made up of the three aforementioned loss functions with two hyper-parameters, η and γ,
which are set to 0.1 and 0.01, respectively, in our experiments.

Lcount = L1 + ηLOT + γLr. (9)

When training to the t-th domain, the performance among previous domains may degrade dramatically, i.e., catastrophic
forgetting, if no constraints are imposed. The self-distillation loss Ldistill is designed to help the model forget less and
count better during the lifelong learning process. To be more specific, we regard the current training model G(t)(·) as
the student model, which can be guided by the teacher model G(t−1)(·) well-trained at the previous step, as shown
in Figure 2. The student model is not expected to forget some previously-learned knowledge when training in the
new domain. Normally, the deep layers of a CNN with a large receptive field contain task-specific and high-level
semantic information while the intermediate layers include general visual knowledge. They are mutually beneficial and
complementary, and assist the model in remembering the helpful knowledge learned previously, during the lifelong
crowd counting process. Thus, we deploy the self-distillation loss at both the feature level and the output level when the
t-th new domain dataset arrives for training.

L(t)
distill =

1

Mt

Mt∑
i=1

(
||G(t−1)(X(t)

i )− G(t)(X(t)
i )||2︸ ︷︷ ︸

output-level distillation

+ ||H(t−1)(X
(t)
i )−H(t)(X

(t)
i )||2︸ ︷︷ ︸

feature-level distillation

)
, (10)

whereH(·) denotes the feature extractor of the model G(·). Since the similarity metric is not our crucial research point
in this paper, we just choose the L2 loss for simplicity. To sum up, the BDFLoss is made up of these two components
within the hyper-parameter λ.

LBDF = Lcount + λLdistill, (11)
where the hyper-parameter λ is applicable as a trade-off between model plasticity and stability. It is the same as vanilla
sequential fine-tuning when λ is equal to 0.

3.4 Model architectures

Our proposed domain-incremental self-distillation lifelong crowd counting benchmark is model-agnostic. Therefore, to
illustrate its effectiveness, we integrate it into several state-of-the-art crowd counting backbone models without the bells
and whistles, CSRNet [9], SFANet [18], DM-Count [19], and DKPNet [17]. Because the attention map supervision of
SFANet may introduce some biases in the experimental comparisons and the source code of DKPNet is not released, we
make the following modifications in our experiments. A small improvement of SFANet is that we enable the network to
learn the attention map adaptively based on training images without generating additional attention maps for supervision.
We modify the DKPNet-baseline in our experiments because we only focus on investigating the effectiveness of our
proposed framework on forgetting and generalization under different model capacities.
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4 Experiment Settings

In this section, we will briefly introduce four datasets that we used in our experiments, the training settings, and some
hyper-parameter selections.

4.1 Datasets

We train and evaluate our model in the public crowd counting datasets, i.e., ShanghaiTech PartA [1], ShanghaiTech
PartB [1], UCF-QNRF [56], NWPU-Crowd [57], and JHU-Crowd++ [58], as shown in Table 2. To illustrate the
generalization of different training paradigms, we have to select one of them as the unseen dataset that could never
be trained during the domain-incremental lifelong learning process. In our experiments, we take the JHU-Crowd++
dataset as an unseen one because it has a variety of diverse scenarios and unconstrained environmental conditions [58].
The synthetic dataset GCC [41] is also utilized to analyze the synthetic-to-real generalization performance under the
lifelong crowd counting settings.

Table 2: The number of images used to train models on different datasets. Last three columns illustrate the minimum,
maximum, and average number of people per image.

Dataset Raw samples/Training samples Test Min Max Avg
ShanghaiTech PartA 300/300 182 33 3,139 501
ShanghaiTech PartB 400/400 316 9 578 123
UCF-QNRF 1,201/1,201 334 49 12,865 815
NWPU-Crowd 3,609/3,609 1,500 0 20,033 418
JHU-Crowd++ 2,772/0 1,600 0 25,791 346
GCC 15,212 0 3,995 501

4.2 Implementation details

We strictly follow the same basic image preprocessing settings in most recent literature [19, 12, 9, 18]. The crop size is
256× 256 for SHA, and 512× 512 for SHB, QNRF, and NWPU datasets. To generate the density map as ground truth,
we just adopt the fixed Gaussian kernel whose variance σ is set to 15 for all datasets. Several useful augmentations like
random horizontal flipping with a probability of 0.5 and normalization are also applied to those images before training.
The hyper-parameter λ in the loss function is set to 0.5 to be a trade-off between model plasticity and stability. We use
the fixed learning rate of 1e-5, a simple weight decay of 5e-4, and an Adam optimizer in all of our experiments. We use
the Pytorch framework and NVIDIA GeForce RTX 3090 GPU workstation to conduct our experiments.

4.3 Evaluation metrics

The catastrophic forgetting phenomenon often exists in domain-incremental learning. To evaluate how much on earth
the model forgets in the previous domains and make a fair comparison with other methods, we propose a new metric,
called normalized Backward Transfer (nBwT). With the help of nBwT, the total forgetfulness over t incremental
domains could be measured to determine whether the model is equipped with the sustainable learning ability. The
normalization operation we introduced in nBwT could eliminate the potential negative impact because of the different
learning difficulties in different domains.

nBwTt =
1

t− 1

t−1∑
i=1

et,i − ei,i
ei,i

, t = 2, ...,N , (12)

where et,i is the test MAE score of i-th dataset when obtaining the optimal model on the t-th dataset, and i < t. nBwTt
is the accumulation of the forgetting performance among all previous t − 1 domain datasets. The non-zero divisor
ei,i is a normalization factor. The larger the nBwT value is, the greater the model forgetting degree is. A value that is
¡0 indicates that the model has attained a positive performance improvement among previously trained datasets. The
theoretical lower bound of nBwTt is − 1

t−1 when et,i equals zero.

Furthermore, we propose two reasonable and impartial criteria, i.e., mMAE and mRMSE (the respective means of MAE
and RMSE in N datasets) to evaluate the roughly overall counting precision of the lifelong crowd counting task as
follows.

mMAE =
1

N

N∑
i=1

1

Mi

Mi∑
j=1

|Ŷj − Yj |, (13)
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mRMSE =
1

N

N∑
i=1

√√√√ 1

Mi

Mi∑
j=1

||Ŷj − Yj ||2, (14)

whereMi denotes the number of images from the i-th test set. Ŷj and Yj are the predicted counts and actual counts of
the j-th image, respectively. The mMAE and mRMSE reduce to standard MAE and RMSE when N is equal to 1.

In addition, we still use the standard MAE score on the unseen JHU-Crowd++ dataset to compare the model generaliza-
tion within different training strategies.

Table 3: The results with different domain-incremental lifelong learning methods. ‘*’ represents our reproduced results
of modified approaches.

Model SHA QNRF SHB NWPU mMAE mRMSE JHU (unseen)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LwF* [51] 62.3 104.4 81.4 133.4 11.5 18.2 90.8 395.2 61.5 162.8 90.4 298.2
EwC* [49] 64.9 117.2 88.5 171.7 10.2 17.6 84.2 377.7 62.0 171.1 85.9 294.1
FLCB (Ours) 68.8 113.9 84.3 160.1 7.8 12.2 76.6 364.2 59.4 162.6 84.8 264.8

Table 4: The quantitative results with different paradigms to compare the forgetting degree and overall performance.
We take the sequential training as our BASELINE and take the joint training as JOINT for reference. FLCB is our
proposed method.

Model Method SHA QNRF SHB NWPU mMAE mRMSE nBwT # params. MACsMAE RMSE MAE RMSE MAE RMSE MAE RMSE

CSRNet
[9]

BASELINE 98.4 168.1 123.9 225.3 13.4 19.1 114.5 456.5 87.6 217.3 0.424

16.26M 27.07GLwF* 71.5 122.4 107.4 198.9 11.3 16.7 123.3 520.3 78.4 214.6 -0.042
FLCB 66.6 100.4 112.5 198.6 13.0 22.0 121.4 473.2 78.4 198.6 -0.102
JOINT 64.0 100.6 109.0 199.7 14.0 18.6 124.8 499.4 78.0 204.6 -

SFANet
[18]

BASELINE 85.4 141.3 112.6 200.7 14.8 18.1 106.9 463.7 79.9 206.0 0.545

17.02M 27.28GLwF* 75.0 128.5 101.3 177.2 11.5 19.0 108.3 450.0 74.0 193.7 -0.002
FLCB 69.4 110.9 103.7 176.6 12.7 20.9 108.8 445.0 73.7 188.4 -0.097
JOINT 77.7 124.0 136.8 236.3 14.0 17.3 127.8 458.5 89.1 209.0 -

DM-Count
[19]

BASELINE 76.0 122.2 94.1 154.1 9.6 17.5 108.3 481.4 72.0 193.8 0.176

21.50M 26.99GLwF* 74.6 124.1 90.2 164.9 9.4 14.9 86.9 375.4 65.3 169.8 0.049
FLCB 69.2 113.2 95.4 166.0 9.7 15.6 83.6 370.8 64.5 166.4 -0.013
JOINT 78.2 129.3 86.7 153.3 7.9 13.0 88.5 393.8 65.3 172.4 -

DKPNet
[17]

BASELINE 92.9 157.8 100.1 179.4 7.7 12.4 90.0 393.6 72.7 185.8 0.371

13.28M 10.38GLwF* 62.3 104.4 81.4 133.4 11.5 18.2 90.8 395.2 61.5 162.8 -0.009
FLCB 68.8 113.9 84.3 160.1 7.8 12.2 76.6 364.2 59.4 162.6 -0.010
JOINT 65.0 108.5 86.0 163.3 8.4 13.2 81.2 357.7 60.2 160.7 -

5 Experimental Results

In this section, we first evaluate the overall performance and the generalization ability of our proposed FLCB framework
compared with those of two classical continual learning approaches [51, 49] in Table 3. Then, we demonstrate the
difference between our FLCB and the other three learning strategies, especially for analyzing their respective forgetting
degrees among the trained datasets (SHA, SHB, QNRF, and NWPU), and their generalization abilities on the unseen
dataset (JHU-Crowd++). The synthetic-to-real experiments are also conducted considering the data privacy issues and
some ethical policies.

5.1 Analysis of catastrophic forgetting

As shown in Table 3, we reproduce two of the classical lifelong learning methods and modify them to adapt to our
crowd counting task, because most lifelong learning methods focus on the classification task, while crowd counting is a
regression-like task. The average performances in past domains and unseen domains of our proposed FLCB method
all surpass that of the LwF and EwC approaches. We compare the quantitative results between the baselines and our
proposed method based on four benchmark models. The results in Table 4 clearly demonstrate that our method can
remarkably alleviate the catastrophic forgetting phenomenon on all models with the lowest mMAE, mRMSE, and
nBwT (i.e., forgetting degree) under the domain-incremental training settings. We also report the model parameters and
the Multiply-Accumulate Operations (MACs) for each benchmark model. The forgetting degree in the intermediate
process is also detailed in Table 5. The results imply that the model will forget less and count better when more labeled
datasets are involved in the lifelong learning process. This indicates that our framework can remember the old yet
meaningful knowledge from the last well-trained model when handling the new domain dataset.
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Table 5: The forgetting performance in the intermediate process of lifelong crowd counting among four models with
FLCB. The data underlined are all less than zero, which has a positive effect on the overall performance of among past
domains.

Method (FLCB) Model SHA QNRF SHB NWPU mMAE mRMSE nBwTMAE RMSE MAE RMSE MAE RMSE MAE RMSE
SHA→QNRF CSRNet 73.9 111.7 121.8 225.3 - - - - 97.9 168.5 0.068
SHA→QNRF SFANet 73.4 114.4 111.3 200.4 - - - - 92.4 157.4 0.225
SHA→QNRF DM-Count 65.2 117.2 84.8 149.0 - - - - 75.0 133.1 0.058
SHA→QNRF DKPNet 62.1 103.9 82.9 149.7 - - - - 72.5 126.8 0.078
SHA→QNRF→SHB CSRNet 73.9 111.7 121.8 225.3 16.1 29.9 - - 70.6 122.3 0.034
SHA→QNRF→SHB SFANet 73.4 114.4 111.3 200.4 20.5 31.5 - - 68.4 115.4 0.113
SHA→QNRF→SHB DM-Count 65.2 117.2 84.8 149.0 13.6 25.6 - - 54.3 97.3 0.029
SHA→QNRF→SHB DKPNet 63.5 109.6 86.4 147.5 10.3 17.3 - - 53.4 91.5 -0.014
SHA→QNRF→SHB→NWPU CSRNet 66.6 100.4 112.5 198.6 13.0 22.0 121.4 473.2 78.4 198.6 -0.102
SHA→QNRF→SHB→NWPU SFANet 69.4 110.9 103.7 176.6 12.7 20.9 108.8 445.0 73.7 188.4 -0.097
SHA→QNRF→SHB→NWPU DM-Count 69.2 113.2 95.4 166.0 9.7 15.6 83.6 370.8 64.5 166.4 -0.013
SHA→QNRF→SHB→NWPU DKPNet 68.8 113.9 84.3 160.1 7.8 12.2 76.6 364.2 59.4 162.6 -0.010

Table 6: The forgetting degree comparison results with different hyper-parameters λ.

Method (FLCB) Model λ
SHA QNRF SHB NWPU nBwTMAE RMSE MAE RMSE MAE RMSE MAE RMSE

SHA→QNRF DKPNet 0.1 62.2 104.7 77.2 137.5 - - - - 0.080
SHA→QNRF DKPNet 0.5 62.1 103.9 82.9 149.7 - - - - 0.078
SHA→QNRF DKPNet 1.0 62.5 108.4 81.2 145.3 - - - - 0.085
SHA→QNRF→SHB DKPNet 0.1 62.2 104.7 77.2 137.5 11.0 19.8 - - 0.040
SHA→QNRF→SHB DKPNet 0.5 63.5 109.6 86.4 147.5 10.3 17.3 - - 0.072
SHA→QNRF→SHB DKPNet 1.0 62.5 108.4 81.2 145.3 10.7 20.1 - - 0.043
SHA→QNRF→SHB→NWPU DKPNet 0.1 65.5 111.4 92.5 181.8 8.7 14.7 84.4 410.1 0.042
SHA→QNRF→SHB→NWPU DKPNet 0.5 68.8 113.9 84.3 160.1 7.8 12.2 76.6 364.2 -0.010
SHA→QNRF→SHB→NWPU DKPNet 1.0 67.0 112.4 84.8 181.1 11.0 18.3 80.0 354.9 0.079

5.2 Effect of hyper-parameterλ

The proposed balanced domain forgetting loss (BDFLoss) is composed of optimal transport counting loss and self-
distillation loss. The hyper-parameter λ plays a dominant role in our proposed BDFLoss to control how much previously
learned meaningful knowledge should be retrained when learning on new domain data. In other words, the hyper-
parameter λ is a trade-off between model plasticity and stability. The greater the value of λ is, the more attention should
be paid to leveraging the distilled knowledge. If λ is equal to 0, it degenerates to the vanilla sequential training without
any constraints of previous knowledge. We just empirically choose the λ = 0.5 to conduct our main experiments in this
paper. In this subsection, we also investigate whether different λ values will have a visible effect on forgetting. The
extensive results demonstrate that the λ = 0.5 is a reasonable choice as a trade-off of model plasticity and stability in
Table 6.

5.3 Analysis of model generalization

5.3.1 Real-to-real generalization

To build a robust model for better crowd counting, we also expect that the model can obtain acceptable performance
among unseen domains, because labeling crowd images is extremely expensive and time-consuming in the real world.
After the ultimate models converge, we test them directly on the unseen JHU-Crowd++ dataset in Table 7. Note that the
images from JHU-Crowd++ are never trained during the process of lifelong learning. Our proposed FLCB can achieve
lower prediction errors in terms of MAE and RMSE over the unseen dataset, indicating a stronger generalization ability
compared with the joint training strategy. Furthermore, taking the DKPNet as an example, we delve into the ablation
study of different layers for distillation in the intermediate lifelong learning process. Every time a new incoming dataset
is finished training, the model will be evaluated on the unseen dataset. The results, shown in Table 8, illustrate that its
performance is boosted progressively with incremental data from different domains. It also indicates that the model can
count better on the unseen domain under the mutually complementary interaction of both feature-level and output-level
distillation. Training in different orders may achieve fluctuating performance in unseen domains. We also present the
results in Appendix B because it could be related to curriculum learning, which is not our main focus in this paper.
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Table 7: Generalization comparison of different training strategies on the unseen JHU-Crowd++ dataset.

Model CSRNet SFANet DM-Count DKPNet
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

JOINT 103.2 320.0 115.5 347.6 96.3 320.3 89.8 318.7
LwF* 101.6 322.3 107.7 312.3 94.6 296.0 90.4 298.2
FLCB 92.9 305.1 102.2 311.3 82.5 298.5 84.8 264.8

Table 8: Generalization comparison on the unseen JHU-Crowd++ dataset with self-distillation in different levels during
the entire lifelong learning process. Here A, Q, B and N are the abbreviations for the name of four datasets (SHA,
QNRF, SHB, NWPU).

Distillation A→Q A→Q→B A→Q→B→N
feature output MAE RMSE MAE RMSE MAE RMSE

X 102.6 341.0 93.2 324.4 87.1 298.5
X 106.7 345.9 102.3 354.8 90.4 298.2

X X 96.2 327.8 90.5 313.0 84.8 264.8

5.3.2 Synthetic-to-real generalization

Considering the data privacy and some ethical policies (i.e., the real-world training images may be unobtainable), we
conduct the same lifelong training settings training on the synthetic crowd dataset (GCC) [41] and investigate the
generalization on the unseen real-world dataset (ShanghaiTech PartB). The GCC dataset is collected from the GTA5
game environment, which contains 15,212 synthetic images with diverse scenes. The synthetic dataset can provide
precise but not time-consuming annotations for training. We split the GCC synthetic dataset into four subsets to mock
the same lifelong training settings. The forgetting phenomenon among incremental synthetic subsets is still analyzed in
Table 9, as well as the generalization performance on the unseen dataset. After obtaining the ultimate model, our FLCB
benchmark achieves the lowest mMAE, mRMSE, and nBwT among previously seen datasets and decent performance
on the unseen real-world dataset. Furthermore, the generalization experimental results in Table 10 verify the superiority
of our proposed benchmark.

In summary, our proposed lifelong crowd counting benchmark (FLCB) can help the crowd counters forget less and
count better to sustainably handle the multiple-domain crowd counting using a single model, which indicates it has a
promising potential to tackle the more complicated scenes in the future.

5.4 Visualization results

To make a more qualitative comparison, we visualize the prediction density maps under different training strategies. As
illustrated in Figure 3, we can discover that the sequential training methods will achieve terrible performance among
old domains after training images from a new domain. Our proposed lifelong crowd counting benchmark can estimate
on both seen and unseen datasets more accurately and outperforms other training paradigms.

5.5 Discussions

Limitations: In this paper, we attempt to develop a single model to handle the incremental datasets from different
domains for better lifelong crowd counting. Judging from both quantitative and qualitative results, our proposed FLCB
does well in achieving a trade-off performance from all domain datasets compared with other methods. However, there
are still some limitations to be discussed that may drive the future research directions in lifelong crowd counting. On
one hand, according to the visualization results, our proposed FLCB method seems to have difficulty in dealing with the
missing annotations (yellow bounding boxes) and background noises (green bounding boxes), like the loudspeaker
box in Figure 3. On the other hand, we do not integrate any replay-based strategies into our experiments considering

Table 9: The experimental results of DKPNet with the synthetic-to-real training settings.

Method GCC-1 GCC-2 GCC-3 GCC-4 mMAE mRMSE nBwTMAE RMSE MAE RMSE MAE RMSE MAE RMSE
BASELINE 55.4 131.3 34.7 82.8 18.5 53.3 35.6 74.9 36.1 85.6 1.130
LwF* 42.8 104.5 37.7 108.5 16.5 43.1 35.1 70.6 33.0 81.7 0.378
FLCB 40.0 95.4 35.1 100.5 14.6 34.5 41.7 82.5 32.8 78.2 0.192
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Table 10: The test MAE and RMSE scores on the unseen ShanghaiTech PartB dataset after training synthetic GCC
subsets.

Method MAE RMSE
JOINT 22.8 30.6
CycleGAN [59] 25.4 39.7
SE CycleGAN [41] 19.9 28.3
FLCB 16.1 25.0

Figure 3: The visualization results of different training paradigms. The top row shows the predictions and compares the
forgetting degree on the first training dataset (SHA), while the bottom row illustrates the predictions and compares the
generalization ability on the unseen dataset (JHU). Red: FLCB can correctly discriminate the non-human objects like
traffic lights. Green: FLCB may be affected by the background noise such as loudspeakers. Yellow: FLCB may not
deal with the missing annotations well which is not the key research point in our work.

the training time and storage overhead. Efficient data sampling strategies and replay-based approaches may boost the
lifelong crowd counting which deserves to be investigated in the future.

Lifelong learning v.s. Self-supervised Learning: We would like to discuss the lifelong learning and self-supervised
learning from a pretraining perspective. They share something in common that is expected to lay the foundation for
the Artificial General Intelligence (AGI). Recent literature [60, 61, 62, 63, 64, 65, 66, 67, 68] shows the power of
self-supervised learning as a novel pretraining paradigm to empower multiple downstream tasks. To an extent, lifelong
learning could also be regarded as a kind of pretraining method, because it learns the shared knowledge and general
representations to boost performance. However, lifelong learning usually requires labeled data for training to enhance
the model capacity, whereas self-supervised learning does not. From our perspectives, both types fo learning could
provide a good pretrained network or initialization for other domain datasets’ or downstream tasks’ training, and
lifelong learning may empower self-supervised learning in the future.

6 Conclusion

Our work proposes a domain-incremental self-distillation learning benchmark for lifelong crowd counting to try to
resolve the catastrophic forgetting and model generalization issues using a single model when training new datasets
from different domains one after another. With the help of the BDFLoss function that we designed, the model can
effectively forget less and count better during the entire lifelong crowd counting process. Additionally, our proposed
metric nBwT can be used to measure forgetting degree in future lifelong crowd counting models. Extensive experiments
demonstrate that our proposed benchmark has a lower forgetting degree over the sequential training baseline and a
stronger generalization ability compared with the joint training strategy. Our proposed method is a simple yet effective
way to sustainably handle the crowd counting problem among multiple domains using a single model with limited
storage overhead when the newly available domain data arrive. It can be incorporated into any existing backbone as
a plug-and-play training strategy for better crowd counting in the real world. Although our work considers crowd
counting, further, the proposed framework has the potential to be applied in other regression-related image or video
tasks.
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[64] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl
Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a
new approach to self-supervised learning. In Advances in Neural Information Processing Systems, volume 33,
pages 21271–21284, 2020.

[65] Chuang Niu and Ge Wang. Self-supervised representation learning with multi-segmental informational coding
(music). arXiv preprint arXiv:2206.06461, 2022.

[66] Chuang Niu, Mengzhou Li, Fenglei Fan, Weiwen Wu, Xiaodong Guo, Qing Lyu, and Ge Wang. Suppression of
correlated noise with similarity-based unsupervised deep learning. arXiv e-prints, pages arXiv–2011, 2020.

[67] Chuang Niu, Hongming Shan, and Ge Wang. SPICE: Semantic pseudo-labeling for image clustering. IEEE
Transactions on Image Processing, 2022.

[68] Chuang Niu and Ge Wang. Unsupervised contrastive learning based transformer for lung nodule detection. Phys.
Med. Biol., 67:204001, 2022.

[69] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big data,
3(1):1–40, 2016.

16



Appendix

A Domain Concept and Gaps of Different Datasets

A domain D consists of two components: a feature space X and a marginal probability distribution P (x), (i.e.,
D = X,P (x)), according to the definition in [69]. It implies that if two domains (DA and DB) are different they may
either have different feature spaces (XA 6= XB) or different marginal probability distributions (P (XA) 6= P (XB)). In
crowd counting tasks, on one hand, off-the-shelf datasets are captured from different cameras or different scenarios like
streets, museums, or gyms, so the data distributions are different. On the other hand, from the Bayesian perspective
(i.e., P (x) = P (c)/P (c|x), where c is the number of people and x is the given crowd image), the marginal probability
distribution P (x) of each dataset is also different. The P (c|x) is our single learning model f(·) which is fixed capacity
and maps from the input images x to the estimated count number c. The P (c) represents the population density of each
dataset, and varies from dataset to dataset, as shown in the Figure 4. Thus, there exist the domain gaps among these
crowd counting datasets with different P (x). This is our further theoretical analysis on the core domain concept.
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Figure 4: The data distributions of four benchmark datasets.

Specifically, the ShanghaiTech PartA dataset is collected from the Internet with the highly-variant density distribution
ranges from 33 to 3,139 pedestrians per image. As a larger crowd counting dataset, the UCF-QNRF dataset includes
1,535 images collected from several image search engines like Google Image Search, Flicker, and so on. In contrast
to other available public datasets, the NWPU-Crowd dataset is a generally more extensive and more crowded dataset
annotating heads from 0 to 20,033 per image, which first introduces negative samples like extremely high-density
images and images containing zero people. As shown in Figure 4, the ShanghaiTech PartB dataset contains fewer
people per image (123 people on average) compared to the other three datasets (501,815,418 people on average) used
for experiments in our paper. Such a prominent domain shift problem motivates us to investigate the catastrophic
forgetting and generalization issues in the lifelong crowd counting task in this study.

In the proposed lifelong crowd counting task, data comes from non-stationary and changing distributions, which
means Pti(X,Y ) 6= Ptj (X,Y ), where ti and tj represent different time-steps t, and X and Y are the crowd images
and their corresponding ground truth density maps (labels). Different from typical crowd counting, the distribution
shifting problem raises a challenge in lifelong crowd counting. At different time-steps, the marginal distribution of
crowd images X shifts among different datasets, while the generation of the ground truth remains the same, which is
Pti(X) 6= Ptj (X) and Pti(Y |X) = Ptj (Y |X). To tackle the lifelong crowd counting task, we specifically present one
unseen dataset (JHU-Crowd++) that focuses on the generalization of crowd counting, which is much larger than any of
the existing datasets, including seen and unseen domains.

To construct the seen domains, we organize four popular crowd counting datasets, including ShanghaiTech PartA,
ShanghaiTech PartB, UCF-QNRF, and the NWPU-Crowd. The training set (7,092 images) comes from the four different
datasets’ training sets. The current domain performance and forgetting degree are evaluated on the corresponding
test sets from the four datasets. To illustrate the model generalization ability, we choose only the test set of the
JHU-Crowd++ dataset (1,600 images) as the unseen domain dataset, because it has a more significant counts span. For
a fair comparison with other training paradigms, none of the images in JHU-Crowd++ dataset are trained during the
lifelong learning process.

B Effect of Different Training Orders

Forgetting Degree Analysis. We compare the results of our proposed framework with different training orders and
the corresponding baseline models in Table 11. The results clearly show that our method can mitigate the forgetting
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Table 11: The forgetting degree comparison results with different training orders.

Training order SHA QNRF SHB NWPU mMAE mRMSE nBwTMAE RMSE MAE RMSE MAE RMSE MAE RMSE
SHA→QNRF→SHB→NWPU(BASELINE) 92.9 157.8 100.1 179.4 7.7 12.4 90.0 393.6 72.7 185.8 0.371
SHA→QNRF→SHB→NWPU(FLCB) 68.8 113.9 84.3 160.1 7.8 12.2 76.6 364.2 59.4 162.6 -0.010
NWPU→QNRF→SHA→SHB(BASELINE) 124.9 229.0 240.1 435.8 7.4 12.5 218.2 826.5 147.7 376.0 1.576
NWPU→QNRF→SHA→SHB(FLCB) 62.3 108.0 78.8 138.6 10.7 20.2 94.8 417.5 61.7 171.1 0.043
QNRF→SHA→SHB→NWPU(BASELINE) 87.1 162.6 107.1 212.8 10.1 16.1 100.1 462.1 76.1 213.4 0.432
QNRF→SHA→SHB→NWPU(FLCB) 61.3 104.8 84.2 149.7 10.3 17.9 83.9 377.8 59.9 162.6 -0.001

Table 12: The generalization comparison results with different training orders on the unseen JHU-Crowd dataset.

Training mode JHU
MAE RMSE

ShanghaiTech PartA 106.0 338.3
ShanghaiTech PartB 154.4 530.2
UCF-QNRF 97.8 315.9
NWPU-Crowd 94.5 323.4
JOINT 89.8 318.7
NWPU→QNRF→SHA→SHB 87.2 287.5
SHA→QNRF→SHB→NWPU 84.8 264.8
QNRF→SHA→SHB→NWPU 83.4 264.8

phenomenon in the lifelong crowd counting process compared with the vanilla sequential training strategy under the
circumstances of different training orders.

Generalization Analysis. To avoid the generalization performance improvement caused by a particular training
order, we also conduct the same experiments with different training orders of four benchmark datasets. As shown in
Table 12, the model still achieves outstanding performance on the unseen JHU-Crowd++ dataset in contrast with the
single-domain training settings and joint training strategy. Compared with joint training and individual training, the
results clearly verify the effectiveness of our proposed domain-incremental self-distillation learning framework for
consistently strengthening the model generalization ability consistently with different training orders.
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