Skip to main content
Log in

Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Carrier frequency offset (CFO) estimation is critical for orthogonal frequency-division multiplexing (OFDM) based transmissions. In this paper, we present a low-complexity, blind CFO estimator for OFDM systems with constant modulus (CM) signaling. Both single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems are considered. Based on the assumption that the channel keeps constant during estimation, we prove that the CFO can be estimated uniquely and exactly through minimizing the power difference of received data on the same subcarriers between two consecutive OFDM symbols; thus, the identifiability problem is assured. Inspired by the sinusoid-like cost function, curve fitting is utilized to simplify our algorithm. Performance analysis reveals that the proposed estimator is asymptotically unbiased and the mean square error (MSE) exhibits no error floor. We show that this blind scheme can also be applied to a MIMO system. Numerical simulations show that the proposed estimator provides excellent performance compared with existing blind methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, B., Yang, Z.X., Pan, C.Y., Ge, J.H., Wang, Y., Lu, Z., 2006. On the synchronization techniques for wireless OFDM systems. IEEE Trans. Broadcast., 52(2):236–244. [doi:10.1109/TBC.2006.872990]

    Article  Google Scholar 

  • Alamouti, S.M., 1998. A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun., 16(8):1451–1458. [doi:10.1109/49.730453]

    Article  Google Scholar 

  • Coulson, A.J., 2001. Maximum likelihood synchronization for OFDM using a pilot symbol: algorithms. IEEE J. Sel. Areas Commun., 19(12):2486–2494. [doi:10.1109/49.974613]

    Article  Google Scholar 

  • Gao, F., Nallanathan, A., 2006. Blind maximum likelihood CFO estimation for OFDM systems via polynomial rooting. IEEE Signal Process. Lett., 13(2):73–76. [doi:10.1109/LSP.2005.861583]

    Article  Google Scholar 

  • Gao, F., Cui, T., Nallanathan, A., 2008. Scattered pilots and virtual carriers based frequency offset tracking for OFDM systems: algorithms, identifiability, and performance analysis. IEEE Trans. Commun., 56(4):619–629. [doi:10.1109/TCOMM.2008.060050]

    Article  Google Scholar 

  • Ghogho, M., Swami, A., Giannakis, G.B., 2001. Optimized Null-Subcarrier Selection for CFO Estimation in OFDM Over Frequency-Selective Fading Channels. IEEE GLOBECOM, 1:202–206.

    Google Scholar 

  • Hsieh, M.H., Wei, C.H., 1999. A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels. IEEE Trans. Veh. Technol., 48(5):1596–1609. [doi:10.1109/25.790537]

    Article  Google Scholar 

  • Huang, D., Letaief, K.B., 2006. Carrier frequency offset estimation for OFDM systems using null subcarriers. IEEE Trans. Commun., 54(5):813–823. [doi:10.1109/TCOMM.2006.874001]

    Article  Google Scholar 

  • IEEE Std. 802.11a, 1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band. IEEE, Piscataway, NJ 08854-1331.

    Google Scholar 

  • IEEE Std. 802.16, 2004. IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems. IEEE, Piscataway. NJ 08854-1331.

    Google Scholar 

  • Lashkarian, N., Kiaei, S., 2000. Class of cyclic-based estimators for frequency-offset estimation of OFDM systems. IEEE Trans. Commun., 48(12):2139–2149. [doi:10.1109/26.891224]

    Article  Google Scholar 

  • Liu, H., Tureli, U., 1998. A high-efficiency carrier estimator for OFDM communications. IEEE Commun. Lett., 2(4):104–106. [doi:10.1109/4234.664219]

    Article  Google Scholar 

  • Lv, T., Li, H., Chen, J., 2005. Joint estimation of symbol timing and carrier frequency offset of OFDM signal over fast time-varying multipath channels. IEEE Trans. Signal Process., 53(12):4526–4535. [doi:10.1109/TSP.2005.859233]

    Article  MathSciNet  Google Scholar 

  • Ma, X., Tepedelenlioglu, C., Giannakis, G.B., Barbarossa S., 2001. Nondata-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance. IEEE J. Sel. Areas Commun., 19(12): 2504–2515. [doi:10.1109/49.974615]

    Article  Google Scholar 

  • Meyrs, M.H., Franks, L., 1980. Joint carrier phase and symbol timing recovery for PAM systems. IEEE Trans. Commun., 28(8):1121–1129. [doi:10.1109/TCOM.1980.1094811]

    Article  Google Scholar 

  • Minn, H., Bhargava, V.K., Letaief, K.B., 2003. A robust timing and frequency synchronization for OFDM systems. IEEE Trans. Wirel. Commun., 2(4):822–839. [doi:10.1109/TWC.2003.814346]

    Article  Google Scholar 

  • Minn, H., Bhargava, V.K., Letaief, K.B., 2006. A combined timing and frequency synchronization and channel estimation for OFDM. IEEE Trans. Commun., 54(3):416–422. [doi:10.1109/TCOMM.2006.869860]

    Article  Google Scholar 

  • Moose, P.H., 1994. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun., 42(10):2908–2914. [doi:10.1109/26.328961]

    Article  Google Scholar 

  • Morelli, M., D’Andrea, A.N., Mengali, U., 2000. Frequency ambiguity resolution in OFDM systems. IEEE Commun. Lett., 4(4):134–136. [doi:10.1109/4234.841321]

    Article  Google Scholar 

  • Morelli, M., Kuo, C.C.J., Pun, M.O., 2007. Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proc. IEEE, 95(7):1394–1427. [doi:10.1109/JPROC.2007.897979]

    Article  Google Scholar 

  • O’Hara, B., Petrick, A., 1999. The IEEE 802.11 Handbook: A Designer’s Companion. The Institute of Electrical and Electronics Engineers, Inc.

  • Pollet, T., van Bladel, M., Moeneclaey, M., 1995. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Trans. Commun., 43(2): 191–193. [doi:10.1109/26.380034]

    Article  Google Scholar 

  • Roman, T., Visuri, S., Koivunen, V., 2006. Blind frequency synchronization in OFDM via diagonality criterion. IEEE Trans. Signal Process., 54(8):3125–3135. [doi:10.1109/TSP.2006.877636]

    Article  Google Scholar 

  • Schmidl, T.M., Cox, D.C., 1997. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun., 45(12):1613–1621. [doi:10.1109/26.650240]

    Article  Google Scholar 

  • Stüber, G.L., Barry, J.R., McLaughlin, S.W., Li, Y., Ingram, M.A., Pratt, T.G., 2004. Broadband MIMO-OFDM wireless communications. Proc. IEEE, 92(2):271–294. [doi:10.1109/JPROC.2003.821912]

    Article  Google Scholar 

  • Talbot, S.L., Boroujeny, B.F., 2008. Spectral method of blind carrier tracking for OFDM. IEEE Trans. Signal Process., 56(7):2706–2717. [doi:10.1109/TSP.2008.917377]

    Article  Google Scholar 

  • Tureli, U., Liu, H., Zoltowski, M.D., 2000. OFDM blind carrier offset estimation: ESPRIT. IEEE Trans. Commun., 48(9):1459–1461. [doi:10.1109/26.870011]

    Article  Google Scholar 

  • Tureli, U., Kivanc, D., Liu, H., 2001. Experimental and analytical studies on a high-resolution OFDM carrier frequency offset estimator. IEEE Trans. Veh. Technol., 50(2):629–643. [doi:10.1109/25.923074]

    Article  Google Scholar 

  • Tureli, U., Honan, P.J., Liu, H., 2004. Low-complexity nonlinear least squares carrier offset estimator for OFDM: identifiability, diversity and performance. IEEE Trans. Signal Process., 52(9):2441–2452. [doi:10.1109/TSP.2004.831918]

    Article  Google Scholar 

  • van de Beek, J.J., van de Sandell, M., Börjesson, P.O., 1997. ML estimation of time and frequency offset in OFDM systems. IEEE Trans. Signal Process., 45(7):1800–1805. [doi:10.1109/78.599949]

    Article  MATH  Google Scholar 

  • van Nee, R., Prasad, R., 2000. OFDM for Wireless Multimedia Communications. Artech House, London, p.33–48.

    Google Scholar 

  • Yao, Y., Giannakis, G.B., 2005. Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Trans. Commun., 53(1):173–183. [doi:10.1109/TCOMM.2004.840623]

    Article  MathSciNet  Google Scholar 

  • Yu, J.H., Su, Y.T., 2004. Pilot-assisted maximum-likelihood frequency-offset estimation for OFDM systems. IEEE Trans. Commun., 52(11):1997–2008. [doi:10.1109/TCOMM.2004.836555]

    Article  Google Scholar 

  • Zeng, X.N., Ghrayeb, A., 2007. A Blind Carrier Frequency Offset Estimation Scheme for OFDM Systems with Constant Modulus Signaling. IEEE Workshop on Signal Processing Advances in Wireless Communications, p.1–5.

  • Zeng, X.N., Ghrayeb, A., 2008. A blind carrier frequency offset estimation scheme for OFDM systems with constant modulus signaling. IEEE Trans. Commun., 56(7): 1032–1037. [doi:10.1109/TCOMM.2008.060585]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-yang Xu.

Additional information

Project supported by the Intel Research Council and the Applied Materials Shanghai Research & Development Fund (No. 0507)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Wy., Lu, B., Hu, Xb. et al. Blind carrier frequency offset estimation for constant modulus signaling based OFDM systems: algorithm, identifiability, and performance analysis. J. Zhejiang Univ. - Sci. C 11, 14–26 (2010). https://doi.org/10.1631/jzus.C0910150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910150

Key words

CLC number

Navigation