Skip to main content
Log in

Multiscale classification and its application to process monitoring

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Multiscale classification has potential advantages for monitoring industrial processes generally driven by events in different time and frequency domains. In this study, we adopt stationary wavelet transform for multiscale analysis and propose an applicable scale selection method to obtain the most discriminative scale features. Then using the multiscale features, we construct two classifiers: (1) a supported vector machine (SVM) classifier based on classification distance, and (2) a Bayes classifier based on probability estimation. For the SVM classifier, we use 4-fold cross-validation and grid-search to obtain the optimal parameters. For the Bayes classifier, we introduce dimension reduction techniques including kernel Fisher discriminant analysis (KFDA) and principal component analysis (PCA) to investigate their influence on classification accuracy. We tested the classifiers with two simulated benchmark processes: the continuous stirred tank reactor (CSTR) process and the Tennessee Eastman (TE) process. We also tested them on a real polypropylene production process. The performance comparison among the classifiers in different scales and scale combinations showed that when datasets present typical scale features, the multiscale classifier had higher classification accuracy than conventional single scale classifiers. We also found that dimension reduction can generally contribute to a better classification in our tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aradhye, H.B., Bakshi, B.R., Strauss, R.A., Davis, J.F., 2003. Multiscale SPC using wavelets: theoretical analysis and properties. AIChE J., 49(4):939–958. [doi:10.1002/aic.690490412]

    Article  Google Scholar 

  • Aradhye, H.B., Bakshi, B.R., Davis, J.F., Ahalt, S.C., 2004. Clustering in wavelet domain: a multiresolution ART network for anomaly detection. AIChE J., 50(10):2455–2466. [doi:10.1002/aic.10245]

    Article  Google Scholar 

  • Bakshi, B.R., 1998. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J., 44(7):1596–1610. [doi:10.1002/aic.690440712]

    Article  Google Scholar 

  • Baudat, G., Anouar, F.E., 2000. Generalized discriminant analysis using a kernel approach. Neur. Comput., 12(10):2385–2404. [doi:10.1162/089976600300014980]

    Article  Google Scholar 

  • Bian, Z., Zhang, X., 2000. Pattern Recognition (2nd Ed.). Tsinghua University Press, Beijing, p.298–299 (in Chinese).

    Google Scholar 

  • Chiang, L.H., Russell, E.L., Braatz, R.D., 2000. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometr. Intell. Lab. Syst., 50(2):243–252. [doi:10.1016/S0169-7439(99)00061-1]

    Article  Google Scholar 

  • Chiang, L.H., Kotanchek, M.E., Kordon, A.K., 2004. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput. Chem. Eng., 28(8):1389–1401.

    Google Scholar 

  • Detroja, K.P., Gudi, R.D., Patwardhan, S.C., 2006. A possibilistic clustering approach to novel fault detection and isolation. J. Process Control, 16(10):1055–1073. [doi:10.1016/j.jprocont.2006.07.001]

    Article  Google Scholar 

  • Downs, J.J., Vogel, E.F., 1993. A plant-wide industrial process control problem. Comput. Chem. Eng., 17(3):245–255. [doi:10.1016/0098-1354(93)80018-I]

    Article  Google Scholar 

  • He, Q.P., Qin, S.J., Wang, J., 2005. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J., 51(2):555–571. [doi:10.1002/aic.10325]

    Article  Google Scholar 

  • He, X.B., Yang, Y.P., Yang, Y.H., 2008. Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis. Chemometr. Intell. Lab. Syst., 93(1):27–33. [doi:10.1016/j.chemolab.2008.03.006]

    Article  Google Scholar 

  • Hsu, C.W., Lin, C.J., 2002. A comparison of methods for multiclass support vector machines. IEEE Trans. Neur. Networks, 13(2):415–425. [doi:10.1109/72.991427]

    Article  Google Scholar 

  • Hsu, C.W., Chang, C.C., Lin, C.J., 2008. A Practical Guide to Support Vector Classification. Available from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf [Accessed on May 21, 2010].

  • Li, J., Zhang, J., Ge, W., Liu, X., 2004. Multi-scale methodology for complex systems. Chem. Eng. Sci., 59(8–9): 1687–1700. [doi:10.1016/j.ces.2004.01.025]

    Google Scholar 

  • Misra, M., Yue, H.H., Qin, S.J., Ling, C., 2002. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng., 26(9):1281–1293. [doi:10.1016/S0098-1354(02)00093-5]

    Article  Google Scholar 

  • Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, p.160, 195–200.

    MATH  Google Scholar 

  • Reis, M.S., Bauer, A., 2009. Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemometr. Intell. Lab. Syst., 95(2):129–137. [doi:10.1016/j.chemolab.2008.09.007]

    Article  Google Scholar 

  • Reis, M.S., Saraiva, P.M., 2006. Generalized multiresolution decomposition frameworks for the analysis of industrial data with uncertainty and missing values. Ind. Eng. Chem. Res., 45(18):6330–6338. [doi:10.1021/ie051313b]

    Article  Google Scholar 

  • Reis, M.S., Saraiva, P.M., Bakshi, B.R., 2008. Multiscale statistical process control using wavelet packets. AIChE J., 54(9):2366–2378. [doi:10.1002/aic.11523]

    Article  Google Scholar 

  • Russell, E.L., Chiang, L.H., Braatz, R.D., 2000. Data-Driven Methods for Fault Detection and Diagnosis in Chemical Process. Springer, London, p.64, 103–107.

    Google Scholar 

  • Wang, H., Li, P., Gao, F., Song, Z., Ding, S.X., 2006. Kernel classifier with adaptive structure and fixed memory for process diagnosis. AIChE J., 52(10):3515–3531. [doi:10.1002/aic.10982]

    Article  Google Scholar 

  • Woody, A.A., Brown, S.D., 2007. Selecting wavelet transform scales for multivariate classification. J. Chemometr., 21(7–9):357–363. [doi:10.1002/cem.1060]

    Article  Google Scholar 

  • Yoon, S., MacGregor, J.F., 2001. Fault diagnosis with multivariate statistical models: part I. using steady state fault signatures. J. Process Control, 11(4):387–400. [doi:10.1016/S0959-1524(00)00008-1]

    Article  Google Scholar 

  • Yoon, S., MacGregor, J.F., 2004. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. AIChE J., 50(11):2891–2903. [doi:10.1002/aic.10260]

    Article  Google Scholar 

  • Yu, J., Qin, S.J., 2008. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J., 54(7):1811–1829. [doi:10.1002/aic.11515]

    Article  Google Scholar 

  • Zhou, S., Xie, L., Wang, S., 2005. On-line fault diagnosis in industrial process using variable moving window and hidden Markov model. Chin. J. Chem. Eng., 13(3):388–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 60574047), the National High-Tech R & D Program (863) of China (Nos. 2007AA04Z168 and 2009AA04Z154), and the Research Fund for the Doctoral Program of Higher Education in China (No. 20050335018)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Ym., Ye, Lb., Zheng, Py. et al. Multiscale classification and its application to process monitoring. J. Zhejiang Univ. - Sci. C 11, 425–434 (2010). https://doi.org/10.1631/jzus.C0910430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910430

Key words

CLC number

Navigation