Skip to main content
Log in

Fast and accurate kernel density approximation using a divide-and-conquer approach

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Density-based nonparametric clustering techniques, such as the mean shift algorithm, are well known for their flexibility and effectiveness in real-world vision-based problems. The underlying kernel density estimation process can be very expensive on large datasets. In this paper, the divide-and-conquer method is proposed to reduce these computational requirements. The dataset is first partitioned into a number of small, compact clusters. Components of the kernel estimator in each local cluster are then fit to a single, representative density function. The key novelty presented here is the efficient derivation of the representative density function using concepts from function approximation, such that the expensive kernel density estimator can be easily summarized by a highly compact model with very few basis functions. The proposed method has a time complexity that is only linear in the sample size and data dimensionality. Moreover, the bandwidth of the resultant density model is adaptive to local data distribution. Experiments on color image filtering/segmentation show that, the proposed method is dramatically faster than both the standard mean shift and fast mean shift implementations based on kd-trees while producing competitive image segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbay, J., Golynski, A., Munro, J.I., Rao, S.S., 2007. Adaptive searching in succinctly encoded binary relations and tree-structured documents. Theor. Comput. Sci., 387(3):284–297. [doi:10.1016/j.tcs.2007.07.015]

    MATH  MathSciNet  Google Scholar 

  • Bouezmarni, T., Rombouts, J.V.K., 2010. Nonparametric density estimation for multivariate bounded data. J. Statist. Plan. Infer., 140(1):139–152. [doi:10.1016/j.jspi. 2009.07.013]

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, D.X., Zhang, X.D., Zheng, C.W., 2009. A genetic algorithm with gene rearrangement for k-means clustering. Pattern Recogn., 42(7):1210–1222. [doi:10. 1016/j.patcog.2008.11.006]

    Article  Google Scholar 

  • Chang, H., Yeung, D.Y., 2008. Robust path-based spectral clustering. Pattern Recogn., 41(1):191–203. [doi:10.1016/ j.patcog.2007.04.010]

    Article  MATH  MathSciNet  Google Scholar 

  • Comaniciu, D., Meer, P., 2002. Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619. [doi:10.1109/34.1000236]

    Article  Google Scholar 

  • de Berg, M., van Kreveld, M., Overmars, M., Cheong, O., 2008. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, p.105–120.

    MATH  Google Scholar 

  • Fashing, M., Tomasi, C., 2005. Mean shift is a bound optimization. IEEE Trans. Pattern Anal. Mach. Intell., 27(3):471–474. [doi:10.1109/TPAMI.2005.59]

    Article  Google Scholar 

  • Georgescu, B., Shimshoni, I., Meer, P., 2003. Mean Shift Based Clustering in High Dimensions: a Texture Classification Example. Proc. 9th IEEE Int. Conf. on Computer Vision, p.456–463. [doi:10.1109/ICCV.2003. 1238382]

  • Han, B., Comaniciu, D., Zhu, Y., Davis, L., 2004. Incremental Density Approximation and Kernel-Based Bayesian Filtering for Object Tracking. Proc. IEEE Computer Society Conf. on Computer Version and Pattern Recognition, p.638–644. [doi:10.1109/CVPR.2004.1315092]

  • Mokkadem, A., Pelletier, M., Slaoui, Y., 2009. The stochastic approximation method for the estimation of a multivariate probability density. J. Statist. Plan. Infer., 139(7):2459–2478. [doi:10.1016/j.jspi.2008.11.012]

    Article  MATH  MathSciNet  Google Scholar 

  • Ozertem, U., Erdogmus, D., Jenssen, R., 2008. Mean shift spectral clustering. Pattern Recogn., 41(6):1924–1938. [doi:10.1016/j.patcog.2007.09.009]

    Article  MATH  Google Scholar 

  • Parzen, E., 1962. On estimation of a probability density function and mode. Ann. Math. Statist., 33(3):1065–1076. [doi:10.1214/aoms/1177704472]

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, S., de Martins Martins, A., Principe, J.C., 2009. Mean shift: an information theoretic perspective. Pattern Recogn. Lett., 30(3):222–230. [doi:10.1016/j.patrec.2008. 09.011]

    Article  Google Scholar 

  • Ren, W., Singh, S., Singh, M., Zhu, Y.S., 2009. State of the art on spatio-temporal information based video retrieval. Pattern Recogn., 42(2):267–282. [doi:10.1016/j.patcog. 2008.08.033]

    Article  MATH  Google Scholar 

  • Ruslan, S., Sam, R., 2003. Adaptive Overrelaxed Bound Optimization Methods. Proc. 20th Int. Conf. on Machine Learning, p.664–671.

  • Shen, C., Brooks, M., 2005. Adaptive Over-Relaxed Mean Shift. Proc. 8th Int. Symp. on Signal Processing and Its Applications, p.575–578. [doi:10.1109/ISSPA.2005.1581 003]

  • Shen, C., Brooks, M., van den Hengel, A., 2007. Fast global kernel density mode seeking: application to localisation and tracking. IEEE Trans. Image Process., 16(5):1457–1469. [doi:10.1109/TIP.2007.894233]

    Article  MathSciNet  Google Scholar 

  • Wang, X.H., Liu, J.L., 2009. Tracking multiple people under occlusion and across cameras using probabilistic models. J. Zhejing Univ.-Sci. A, 10(7):985–996. [doi:10.1631/jzus. A0820474]

    Article  MATH  Google Scholar 

  • Xu, G., Xu, J.H., 2010. Efficient approximation algorithms for clustering point-sets. Comput. Geom., 43(1):59–66. [doi:10.1016/j.comgeo.2007.12.002]

    Article  MATH  MathSciNet  Google Scholar 

  • Yu, S.Y., Wang, F.L., Xue, Y.F., Yang, J., 2009. Bayesian moving object detection in dynamic scenes using an adaptive foreground model. J. Zhejing Univ.-Sci. A, 10(12):1750–1758. [doi:10.1631/jzus.A0820743]

    Article  Google Scholar 

  • Zhang, J., Zhang, K., Xu, X., Tse, C.K., Small, M., 2009. Seeding the kernels in graphs: towards multi-resolution community analysis. New J. Phys., 11(11):113003. [doi:10.1088/1367-2630/11/11/113003]

    Article  Google Scholar 

  • Zhang, K., Kwok, J.T., 2007. Simplifying Mixture Models Through Function Approximation. Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, MA, p.1577–1584.

    Google Scholar 

  • Zhang, K., Tang, M., Kwok, J.T., 2005. Applying Neighborhood Consistency for Fast Clustering and Kernel Density Estimation. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2:1001–1007. [doi:10.1109/CVPR.2005.73]

    Google Scholar 

  • Zivkovic, Z., Cemgil, A.T., Krose, B., 2009. Approximate Bayesian methods for kernel-based object tracking. Comput. Vis. Image Understand., 113(6):743–749. [doi:10.1016/j.cviu.2008.12.008]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-xia Jin.

Additional information

Project (No. 9140C1204060809) supported by the National Key Laboratory Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Yx., Zhang, K., Kwok, J.T. et al. Fast and accurate kernel density approximation using a divide-and-conquer approach. J. Zhejiang Univ. - Sci. C 11, 677–689 (2010). https://doi.org/10.1631/jzus.C0910668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910668

Key words

CLC number

Navigation