Skip to main content
Log in

Dynamic modeling of a 6-degree-of-freedom Stewart platform driven by a permanent magnet synchronous motor

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

For an electrical six-degree-of-freedom Stewart platform, it is difficult to compute the equivalent inertia of each motor in real time, as the inertia is time-varying. In this study, an analysis using Kane’s equation is undertaken of the driven torque of the movements of motor systems (including motor friction, movements of motor systems along with the actuators, rotation around axis of rotors and snails), as well as driven torque of the platform and actuators. The electromagnetic torque was calculated according to vector-controlled permanent magnet synchronous motor (PMSM) dynamics. By equalizing the driven torque and electromagnetic torque, a model was established. This method, taking into consideration the influence of counter electromotive force (EMF) and motor friction, could be applied to the real-time dynamic control of the platform, through which the calculation of the time-varying equivalent inertia is avoided. Finally, simulations with typically desired trajectory inputs are presented and the performance of the Stewart platform is determined. With this approach, the multi-body dynamics of the electrical Stewart platform is better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, B.S., 2006. Electric Drive Control System. Mechanical Industry Press, Beijing, China, p.53–254 (in Chinese).

    Google Scholar 

  • Chen, L., Deng, Z.Q., Yan, Y.G., 2004. Design of current control loop for permanent magnet synchronous servo system. J. Nanjing Univ. Aeronaut. Astronaut., 36(2):220–225 (in Chinese).

    Google Scholar 

  • Dasgupta, B., Choudhury, P., 1999. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators. Mech. Mach. Theory, 34(6): 801–824. [doi:10.1016/S0094-114X(98)00081-0]

    Article  MATH  MathSciNet  Google Scholar 

  • Dasgupta, B., Mruthyunjaya, T.S., 1998. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory, 33(8):1135–1152. [doi:10.1016/S0094-114X(97)00118-3]

    MATH  MathSciNet  Google Scholar 

  • Elmas, C., Ustun, O., Sayan, H.H., 2008. A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive. Exp. Syst. Appl., 34(1):657–664. [doi:10.1016/j.eswa.2006.10.002]

    Article  Google Scholar 

  • Fichter, E.F., 1986. A Stewart platform-based manipulator general theory and practical construction. Int. J. Robot. Res., 5(2):157–182. [doi:10.1177/027836498600500216]

    Article  Google Scholar 

  • Fu, S.W., Yao, Y., Wu, Y.Q., 2007. Comments on “A Newton- Euler formulation for the inverse dynamics of the Stewart platform manipulator” by B. Dasgupta and T.S. Mruthyunjaya. Mech. Mach. Theory, 42(12):1668–1671. [doi:10.1016/j.mechmachtheory.2006.01.010]

    Article  MATH  Google Scholar 

  • Gao, X.S., Lei, D.L., Liao, Q.Z., Zhang, G.F., 2005. Generalized Stewart-Gough platforms and their direct kinematics. IEEE Trans. Robot., 21(2):141–151. [doi:10.1109/TRO. 2004.835456]

    Article  Google Scholar 

  • Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L., 1992. On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Autonom. Syst., 9(4):237–254. [doi:10.1016/0921-8890(92)90041-V]

    Article  Google Scholar 

  • Gough, V.E., 1956. Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. Auto Div. Inst. Mech. Eng., p.392–394.

  • Jan, R.M., Tseng, C.S., Liu, R.J., 2008. Robust PID control design for permanent magnet synchronous motor: a genetic approach. Electr. Power Syst. Res., 78(7):1161–1168. [doi:10.1016/j.epsr.2007.09.011]

    Article  Google Scholar 

  • Ji, Z., 1993. Study of the Effect of Leg Inertia in Stewart Platforms. Int. Conf. on Robotics and Automation, 1:121–126. [doi:10.1109/ROBOT.1993.291971]

    Google Scholar 

  • Kang, C.G., 2001. Closed-form force sensing of a 6-axis force transducer based on the Stewart platform. Sens. Actuat. A, 90(1–2):31–37. [doi:10.1016/S0924-4247(00)00564-1]

    Article  Google Scholar 

  • Khalil, W., Guegan, S., 2004. Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans. Robot., 20(4):754–762. [doi:10.1109/TRO.2004.829473]

    Article  Google Scholar 

  • Kim, N.I., Lee, C.W., 1998. High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control. IEEE Int. Conf. on Robotics and Automation, p.2716–2721.

  • Koekebakker, S.H., 2001. Model Based Control of a Flight Simulator Motion System. PhD Thesis, Delft University of Technology, the Netherlands.

    Google Scholar 

  • Liu, M.J., Li, C.X., Li, C.N., 2000. Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Trans. Robot. Automat., 16(1):94–98. [doi:10.1109/70.833196]

    Article  Google Scholar 

  • Omran, A., Kassem, A., El-Bayoumi, G., Bayoumi, M., 2009. Mission-based optimal control of Stewart manipulator. Aircraft Eng. Aerospace Technol., 81(3):226–233. [doi:10.1108/00022660910954736]

    Article  Google Scholar 

  • Shim, J.H., Park, J.Y., Kwon, D.S., Kim, S., 1997. Kinematic Design of a Six Degree-of-Freedom In-Parallel Manipulator for Probing Task. Proc. IEEE Int. Conf. on Robotics and Automation, p.2967–2973. [doi:10.1109/ROBOT.1997. 606738]

  • Stewart, D., 1965. A Platform with Six Degrees of Freedom. Proc. Institution of Mechanical Engineers, 180:371–386. [doi:10.1243/PIME_PROC_1965_180_029_02]

    Article  Google Scholar 

  • Ting, Y., Chen, Y.S., Jar, H.C., 2004. Modeling and control for a Gough-Stewart platform CNC machine. J. Robot. Syst., 21(11):609–623. [doi:10.1002/rob.20039]

    Article  MATH  Google Scholar 

  • Wai, R.J., 2001. Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network. IEEE Trans. Ind. Electron., 48(5):926–944. [doi:10.1109/41.954557]

    Article  Google Scholar 

  • Yiu, Y.K., Cheng, H., Xiong, Z.H., Liu, G.F., Li, Z.X., 2001. On the Dynamics of Parallel Manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, 4:3766–3771. [doi:10.1109/ROBOT.2001.933204]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Zhang, T., He, Jf. et al. Dynamic modeling of a 6-degree-of-freedom Stewart platform driven by a permanent magnet synchronous motor. J. Zhejiang Univ. - Sci. C 11, 751–761 (2010). https://doi.org/10.1631/jzus.C0910714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910714

Key words

CLC number

Navigation