Skip to main content
Log in

Binary tree of posterior probability support vector machines

  • Science Letters
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Posterior probability support vector machines (PPSVMs) prove robust against noises and outliers and need fewer storage support vectors (SVs). Gonen et al. (2008) extended PPSVMs to a multiclass case by both single-machine and multimachine approaches. However, these extensions suffer from low classification efficiency, high computational burden, and more importantly, unclassifiable regions. To achieve higher classification efficiency and accuracy with fewer SVs, a binary tree of PPSVMs for the multiclass classification problem is proposed in this letter. Moreover, a Fisher ratio separability measure is adopted to determine the tree structure. Several experiments on handwritten recognition datasets are included to illustrate the proposed approach. Specifically, the Fisher ratio separability accelerated binary tree of PPSVMs obtains overall test accuracy, if not higher than, at least comparable to those of other multiclass algorithms, while using significantly fewer SVs and much less test time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn., 20(3):273–297. [doi:10.1007/BF00994018]

    MATH  Google Scholar 

  • Dietterich, T.G., Bakiri, G., 1995. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res., 2(1):263–286.

    MATH  Google Scholar 

  • Duda, R.O., Har, P.E., 1973. Pattern Classification and Scene Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Fei, B., Liu, J., 2006. Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans. Neur. Netw., 17(3):696–704. [doi:10.1109/TNN.2006.872343]

    Article  Google Scholar 

  • Gonen, M., Tanuğur, A.G., Alpaydin, E., 2008. Multiclass posterior probability support vector machines. IEEE Trans. Neur. Netw., 19(1):130–139. [doi:10.1109/TNN.2007.903157]

    Article  Google Scholar 

  • Guo, G., Li, S.Z., Chan, K.L., 2001. Support vector machines for face recognition. Image Vis. Comput., 19(9–10):631–638. [doi:10.1016/S0262-8856(01)00046-4]

    Article  Google Scholar 

  • Hsu, C.W., Lin, C.J., 2002. A comparison of methods for multi-class support vector machines. IEEE Trans. Neur. Netw., 13(2):415–425. [doi:10.1109/72.991427]

    Article  Google Scholar 

  • Hu, Z.H., Cai, Y.Z., Li, Y.G., Xu, X.M., 2005. Data fusion for fault diagnosis using multi-class support vector machines. J. Zhejiang Univ.-Sci., 6A(10):1030–1039. [doi:10.1631/jzus.2005.A1030]

    Article  Google Scholar 

  • Huang, P., Zhu, J., 2010. Multi-instance learning for software quality estimation in object-oriented systems: a case study. J. Zhejiang Univ.-Sci. C (Comput & Electron.), 11(2): 130–138. [doi:10.1631/jzus.C0910084]

    Article  Google Scholar 

  • KreBel, U.H.G., 1999. Pairwise classification and support vector machine. In: Schölkopf, B., Burges, C.J., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA.

    Google Scholar 

  • Leng, B., Qin, Z., Li, L.Q., 2007. Support vector machines active learning for 3D model retrieval. J. Zhejiang Univ.-Sci. A, 8(12):1953–1961. [doi:10.1631/jzus.2007.A1953]

    Article  MATH  Google Scholar 

  • Muller, K.R., Mika, S., Ratisch, G., Tsuda, K., Scholkopf, B., 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neur. Netw., 12(2):181–201. [doi:10. 1109/72.914517]

    Article  Google Scholar 

  • Platt, J., Cristianini, N., Shawe-Taylor, J., 2000. Large margin DAGSVM’s for multiclass classification. Adv. Neur. Inform. Process. Syst., 12:547–553.

    Google Scholar 

  • Takahashi, F., Abe, S., 2002. Decision-Tree-Based Multiclass Support Vector Machine. Proc. 9th Int. Conf. on Neural Information, p.1418–1422.

  • Tao, Q., Wu, G.W., Wang, F.Y., Wang, J., 2005. Posterior probability support vector machines for unbalanced data. IEEE Trans. Neur. Netw., 16(6):1561–1573. [doi:10.1109/TNN.2005.857955]

    Article  Google Scholar 

  • Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer Verlag, New York.

    MATH  Google Scholar 

  • Vapnik, V., 1998. Statistical Learning Theory. John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Xin, D., Wu, Z.H., Pan, Y.H., 2002. Probability output of multi-class support vector machines. J. Zhejiang Univ.-Sci., 3(2):131–134. [doi:10.1631/jzus.2002.0131]

    Article  Google Scholar 

  • Zhang, L., Zhou, W.D., Su, T.T., Jiao, L.C., 2007. Decision tree support vector machine. Int. J. Artif. Intell. Tools, 16(1):1–15. [doi:10.1142/S0218213007003163]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhou.

Additional information

Project (Nos. 60874104 and 70971020) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Dl., Zheng, Jg. & Zhou, Y. Binary tree of posterior probability support vector machines. J. Zhejiang Univ. - Sci. C 12, 83–87 (2011). https://doi.org/10.1631/jzus.C1000022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000022

Key words

CLC number

Navigation