Skip to main content
Log in

Distributed video coding with adaptive selection of hash functions

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We address the compression efficiency of feedback-free and hash-check distributed video coding, which generates and transmits a hash code of a source information sequence. The hash code helps the decoder perform a motion search. A hash collision is a special case in which the hash codes of wrongly reconstructed information sequences occasionally match the hash code of the source information sequence. This deteriorates the quality of the decoded image greatly. In this paper, the statistics of hash collision are analyzed to help the codec select the optimal trade-off between the probability of hash collision and the length of the hash code, according to the principle of rate-distortion optimization. Furthermore, two novel algorithms are proposed: (1) the nonzero prefix of coefficients (NPC), which indicates the count of nonzero coefficients of each block for the second algorithm, and also saves 8.4% bitrate independently; (2) the adaptive selection of hash functions (AHF), which is based on the NPC and saves a further 2%–6% bitrate on average. The detailed optimization of the parameters of AHF is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, A., Rane, S., Girod, B., 2004. Wyner-Ziv Video Coding with Hash-Based Motion Compensation at the Receiver. Int. Conf. on Image Processing, 5:3097–3100. [doi:10.1109/ICIP.2004.1421768]

    Google Scholar 

  • Artigas, X., Ascenso, J., Dalai, M., Klomp, S., Kubasov, D., Ouaret, M., 2007. The DISCOVER Codec: Architecture, Techniques and Evaluation. Picture Coding Symp, p.1–4.

  • Ascenso, J., Pereira, F., 2007. Adaptive Hash-Based Side Information Exploitation for Efficient Wyner-Ziv Video Coding. IEEE Int. Conf. on Image Processing, p.29–32. [doi:10.1109/ICIP.2007.4379238]

  • Asif, M., Soraghan, J.J., 2008. Wyner Ziv Codec Design for Surveillance System Using Adaptive Puncturing Rate. 3rd Int. Symp. on Communications, Control and Signal Processing, p.1454–1459. [doi:10.1109/ISCCSP.2008.4537456]

  • Bjontegaard, G., 2001. Calculation of Average PSNR Differences Between RD-Curves. VCEG 13th Meeting. VCEG-M33.

  • Brites, C., Pereira, F., 2007. Encoder Rate Control for Transform Domain Wyner-Ziv Video Coding. IEEE Int. Conf. on Image Processing, p.5–8. [doi:10.1109/ICIP.2007.4379078]

  • Cote, G., Erol, B., Gallant, M., Kossentini, F., 1998. H.263+: video coding at low bit rates. IEEE Trans. Circ. Syst. Video Technol., 8(7):849–866. [doi:10.1109/76.735381]

    Article  Google Scholar 

  • Do, T., Shim, H.J., Jeon, B., 2009. Motion Linearity Based Skip Decision for Wyner-Ziv Coding. 2nd IEEE Int. Conf. on Computer Science and Information Technology, p.410–413. [doi:10.1109/ICCSIT.2009.5234792]

  • Dufaux, F., Gao, W., Tubaro, S., Vetro, A., 2009. Distributed video coding: trends and perspectives. EURASIP J. Image Video Process., 2009:508167. [doi:10.1155/2009/508167]

    Google Scholar 

  • Girod, B., Aaron, A.M., Rane, S., Rebollo-Monedero, D., 2005. Distributed video coding. Proc. IEEE, 93(1):71–83. [doi:10.1109/JPROC.2004.839619]

    Article  Google Scholar 

  • Guillemot, C., Pereira, F., Torres, L., Ebrahimi, T., Leonardi, R., Ostermann, J., 2007. Distributed monoview and multiview video coding. IEEE Signal Process. Mag., 24(5):67–76. [doi:10.1109/MSP.2007.904808]

    Article  Google Scholar 

  • Guo, M., Lu, Y., Wu, F., Li, S.P., Gao, W., 2007. Distributed Video Coding with Spatial Correlation Exploited Only at the Decoder in Circuits and Systems. IEEE Int. Symp. on Circuits and Systems, p.41–44. [doi:10.1109/ISCAS.2007.378177]

  • Hua, G., Chen, C.W., 2008. Distributed Video Coding with Zero Motion Skip and Efficient DCT Coefficient Encoding. IEEE Int. Conf. on Multimedia and Expo, p.777–780. [doi:10.1109/ICME.2008.4607550]

  • Koopman, P., Chakravarty, T., 2004. Cyclic Redundancy Code (CRC) Polynomial Selection for Embedded Networks. Int. Conf. on Dependable Systems and Networks, p.145–154. [doi:10.1109/DSN.2004.1311885]

  • Mukherjee, D., 2009. Parameter selection for Wyner & Ziv coding of Laplacian sources with additive Laplacian or Gaussian innovation. IEEE Trans. Signal Process., 57(8):3208–3225. [doi:10.1109/TSP.2009.2018617]

    Article  MathSciNet  Google Scholar 

  • Pereira, F., Torres, L., Guillemot, C., Ebrahimi, T., Leonardi, R., Klomp, S., 2008. Distributed video coding: selecting the most promising application scenarios. Signal Process. Image Commun., 23(5):339–352. [doi:10.1016/j.image.2008.04.002]

    Article  Google Scholar 

  • Peterson, W.W., Brown, D.T., 1961. Cyclic codes for error detection. Proc. IRE, 49(1):228–235. [doi:10.1109/JRPROC.1961.287814]

    Article  MathSciNet  Google Scholar 

  • Puri, R., Ramchandran, K., 2002. PRISM: a New Robust Video Coding Architecture Based on Distributed Compression Principles. Proc. Annual Allerton Conf. on Communication Control and Computing, 40:586–595.

    Google Scholar 

  • Puri, R., Ramchandran, K., 2003a. PRISM: a ‘Reversed’ Multimedia Coding Paradigm. Int. Conf. on Image Processing, 1:617–620. [doi:10.1109/ICIP.2003.1247037]

    Google Scholar 

  • Puri, R., Ramchandran, K., 2003b. PRISM: an Uplink-Friendly Multimedia Coding Paradigm. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 4:856–859. [doi:10.1109/ICASSP.2003.1202778]

    Google Scholar 

  • Puri, R., Majumdar, A., Ramchandran, K., 2007. PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans. Image Process., 16(10):2436–2448. [doi:10.1109/TIP.2007.904949]

    Article  MathSciNet  Google Scholar 

  • Slepian, D., Wolf, J., 1973. Noiseless coding of correlated information sources. IEEE Trans. Inform. Theory, 19(4):471–480. [doi:10.1109/TIT.1973.1055037]

    Article  MathSciNet  MATH  Google Scholar 

  • Sullivan, G.J., Wiegand, T., 1998. Rate-distortion optimization for video compression. IEEE Signal Process. Mag., 15:74–90. [doi:10.1109/79.733497]

    Article  Google Scholar 

  • Varodayan, D., Aaron, A., Girod, B., 2005. Rate-Adaptive Distributed Source Coding Using Low-Density Parity-Check Codes. Conf. Record of the 39th Asilomar Conf. on Signals, Systems and Computers, p.1203–1207.

  • Wyner, A., 1975. On source coding with side information at the decoder. IEEE Trans. Inform. Theory, 21(3):294–300. [doi:10.1109/TIT.1975.1055374]

    Article  MathSciNet  MATH  Google Scholar 

  • Wyner, A., Ziv, J., 1976. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inform. Theory, 22(1):1–10. [doi:10.1109/TIT.1976.1055508]

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, S.T., Zhao, M.J., Qiu, P.L., 2007. On Wyner-Ziv problem for general sources with average distortion criterion. J. Zhejiang Univ.-Sci. A, 8(8):1263–1270. [doi:10.1631/jzus.2007.A1263]

    Article  MATH  Google Scholar 

  • Yu, L., Wang, J., 2010. Review of the current and future technologies for video compression. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(1):1–13. [doi:10.1631/jzus.C0910684]

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yu.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2009CB320903) and the Program for New Century Excellent Talents in University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Xh., Yu, L. Distributed video coding with adaptive selection of hash functions. J. Zhejiang Univ. - Sci. C 12, 387–396 (2011). https://doi.org/10.1631/jzus.C1000198

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000198

Key words

CLC number

Navigation