Skip to main content
Log in

Reduced precision solution criteria for nonlinear model predictive control with the feasibility-perturbed sequential quadratic programming algorithm

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose a novel kind of termination criteria, reduced precision solution (RPS) criteria, for solving optimal control problems (OCPs) in nonlinear model predictive control (NMPC), which should be solved quickly for new inputs to be applied in time. Computational delay, which may destroy the closed-loop stability, usually arises while non-convex and nonlinear OCPs are solved with differential equations as the constraints. Traditional termination criteria of optimization algorithms usually involve slow convergence in the solution procedure and waste computing resources. Considering the practical demand of solution precision, RPS criteria are developed to obtain good approximate solutions with less computational cost. These include some indices to judge the degree of convergence during the optimization procedure and can stop iterating in a timely way when there is no apparent improvement of the solution. To guarantee the feasibility of iterate for the solution procedure to be terminated early, the feasibility-perturbed sequential quadratic programming (FP-SQP) algorithm is used. Simulations on the reference tracking performance of a continuously stirred tank reactor (CSTR) show that the RPS criteria efficiently reduce computation time and the adverse effect of computational delay on closed-loop stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar-Lopez, R., Martinez-Guerra, R., 2005. State estimation for nonlinear systems under model unobservable uncertainties: application to continuous reactor. Chem. Eng. J., 108(1–2):139–144. [doi:10.1016/j.cej.2005.01.008]

    Article  Google Scholar 

  • Barkhordari Yazdi, M., Jahed-Motlagh, M.R., 2009. Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization. Chem. Eng. J., 155(3):838–843. [doi:10.1016/j.cej.2009.09.008]

    Article  Google Scholar 

  • Bequette, B.W., 2002. Behavior of CSTR with a Recirculating Jacket Heat Transfer System. American Control Conf., p.3275–3280.

  • Bock, H.G., Diehl, M., Kühl, P., Kostina, E., Schlöder, J.P., Wirsching, L., 2007. Numerical methods for efficient and fast nonlinear model predictive control. Lect. Notes Control Inform. Sci., 358:163–179. [doi:10.1007/978-3-540-72699-9_13]

    Article  Google Scholar 

  • Chen, H., Allgöwer, F., 1998. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 34(10):1205–1217. [doi:10.1016/S0005-1098(98)00073-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W., Shao, Z., Wang, K., Chen, X., Biegler, L.T., 2010. Convergence depth control for interior point methods. AIChE J., 56(12):3146–3161. [doi:10.1002/aic.12225]

    Article  Google Scholar 

  • Chen, W.H., Ballance, D.J., O’Reilly, J., 2000. Model predictive control of nonlinear systems: computational burden and stability. IEE Proc.-Control Theory Appl., 147(4):387–394. [doi:10.1049/ip-cta:20000379]

    Article  Google Scholar 

  • Czeczot, J., 2006. Balance-based adaptive control methodology and its application to the non-isothermal CSTR. Chem. Eng. Process., 45(5):359–371. [doi:10.1016/j.cep.2005.10.002]

    Article  Google Scholar 

  • DeHaan, D., Guay, M., 2006. A new real-time perspective on non-linear model predictive control. J. Process Control, 16(6):615–624. [doi:10.1016/j.jprocont.2005.10.002]

    Article  Google Scholar 

  • Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F., 2002. Realtime optimization and non-linear model predictive control of processes governed by differential-algebraic equations. J. Process Control, 12(4): 577–588. [doi:10.1016/S0959-1524(01)00023-3]

    Article  Google Scholar 

  • Diehl, M., Bock, H.G., Schlöder, J.P., 2005. A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J. Control Optim., 43(5):1714–1736. [doi:10.1137/S0363012902400713]

    Article  MathSciNet  MATH  Google Scholar 

  • Diehl, M., Ferreau, H.J., Haverbeke, N., 2008. Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation. Workshhop on Assessment and Future Directions of NMPC.

  • Findeisen, R., Allgöwer, F., 2002. An Introduction to Nonlinear Model Predictive Control. 21st Benelux Meeting on Systems and Control, p.119–141.

  • Findeisen, R., Allgöwer, F., 2003. Computational Delay in Nonlinear Model Predictive Control. Proc. Int. Symp. on Advanced Control of Chemical Processes, p.427–452.

  • Gill, P.E., Murray, W., Wright, M.H., 1981. Practical Optimization. Academic Press, London.

    MATH  Google Scholar 

  • Henson, M.A., 1998. Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng., 23(2):187–202. [doi:10.1016/S0098-1354(98)00260-9]

    Article  MathSciNet  Google Scholar 

  • Henson, M.A., Seborg, D.E., 1997. Nonlinear Process Control. Prentice Hall PTR, Upper Saddle River, New Jersey.

    Google Scholar 

  • Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S., 2005. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Software, 31(3):363–396. [doi:10.1145/1089014.1089020]

    Article  MathSciNet  MATH  Google Scholar 

  • Jockenhövel, T., Biegler, L.T., Wächter, A., 2003. Dynamic optimization of the Tennessee Eastman process using the OptControlCentre. Comput. Chem. Eng., 27(11):1513–1531. [doi:10.1016/S0098-1354(03)00113-3]

    Article  Google Scholar 

  • Kameswaran, S., Biegler, L.T., 2006. Simultaneous dynamic optimization strategies: recent advances and challenges. Comput. Chem. Eng., 30(10–12):1560–1575. [doi:10.1016/j.compchemeng.2006.05.034]

    Article  Google Scholar 

  • Lang, Y.D., Biegler, L.T., 2007. A software environment for simultaneous dynamic optimization. Comput. Chem. Eng., 31(8):931–942. [doi:10.1016/j.compchemeng.2006.10.017]

    Article  Google Scholar 

  • Mansour, M., Ellis, J.E., 2008. Methodology of on-line optimization applied to a chemical reactor. Appl. Math. Model., 32(2):170–184. [doi:10.1016/j.apm.2006.11.014]

    Article  MATH  Google Scholar 

  • Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M., 2000. Constrained model predictive control: stability and optimality. Automatica, 36(6):789–814. [doi:10.1016/S0005-1098(99)00214-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal, J., Wright, S.J., 1999. Numerical Optimization. Springer, New York. [doi:10.1007/b98874]

    Book  MATH  Google Scholar 

  • Pan, T., Li, S., Cai, W., 2007. Lazy learning-based online identification and adaptive PID control: a case study for CSTR process. Ind. Eng. Chem. Res., 46(2):472–480. [doi:10.1021/ie0608713]

    Article  Google Scholar 

  • Qin, S.J., Badgwell, T.A., 2003. A survey of industrial model predictive control technology. Control Eng. Pract., 11(7):733–764. [doi:10.1016/S0967-0661(02)00186-7]

    Article  Google Scholar 

  • Santos, L.O., Afonso, P.A., Castro, J.A., Oliveira, N.M., Biegler, L.T., 2001. On-line implementation of nonlinear MPC: an experimental case study. Control Eng. Pract., 9(8):847–857. [doi:10.1016/S0967-0661(01)00049-1]

    Article  Google Scholar 

  • Schäfer, A., Kühl, P., Diehl, M., Schlöder, J., Bock, H.G., 2007. Fast reduced multiple shooting methods for nonlinear model predictive control. Chem. Eng. Process.: Process Intens., 46(11):1200–1214. [doi:10.1016/j.cep.2006.06.024]

    Article  Google Scholar 

  • Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B., 1999. Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Autom. Control, 44(3):648–654. [doi:10.1109/9.751369]

    Article  MathSciNet  MATH  Google Scholar 

  • Tenny, M., 2002. Computational Strategies for Nonlinear Model Predictive Control. PhD Thesis, University of Wisconsin-Madison, Madison, Wisconsin, USA.

    Google Scholar 

  • Tenny, M., Wright, S.J., Rawlings, J.B., 2004. Nonlinear model predictive control via feasibility-perturbed sequential quadratic programming. Comput. Optim. Appl., 28(1):87–121. [doi:10.1023/B:COAP.0000018880.63497.eb]

    Article  MathSciNet  MATH  Google Scholar 

  • Vassiliadis, V.S., Sargent, R.W.H., Pantelides, C.C., 1994a. Solution of a class of multistage dynamic optimization problems. 1. Problems without path constrints. Ind. Eng. Chem. Res., 33(9):2111–2122. [doi:10.1021/ie00033a014]

    Article  Google Scholar 

  • Vassiliadis, V.S., Sargent, R.W.H., Panteides, C.C., 1994b. Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind. Eng. Chem. Res., 33(9):2123–2133. [doi:10.1021/ie00033a015]

    Article  Google Scholar 

  • Wang, K., Shao, Z., Zhang, Z., Chen, Z., Fang, X., Zhou, Z., 2007. Convergence depth control for process system optimization. Ind. Eng. Chem. Res., 46(23):7729–7738. [doi:10.1021/ie070073s]

    Article  Google Scholar 

  • Wright, S.J., Tenny, M., 2004. A feasible trust-region sequential quadratic programming algorithm. SIAM J. Optim., 14(4):1074–1105. [doi:10.1137/S1052623402413227]

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, W., 2000. Nonlinear bounded control of a nonisothermal CSTR. Ind. Eng. Chem. Res., 39(10):3789–3798. [doi:10.1021/ie990186e]

    Article  Google Scholar 

  • Zavala, V.M., Biegler, L.T., 2009. The advanced-step NMPC controller: optimality, stability and robustness. Automatica, 45(1):86–93. [doi:10.1016/j.automatica.2008.06.011]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jiang Shao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 60934007 and 60974007) and the National Basic Research Program (973) of China (No. 2009CB320603)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Jn., Shao, Zj., Wang, Kx. et al. Reduced precision solution criteria for nonlinear model predictive control with the feasibility-perturbed sequential quadratic programming algorithm. J. Zhejiang Univ. - Sci. C 12, 919–931 (2011). https://doi.org/10.1631/jzus.C10a0512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C10a0512

Key words

CLC number

Navigation