Skip to main content
Log in

An accurate analytical I–V model for sub-90-nm MOSFETs and its application to read static noise margin modeling

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose an accurate model to describe the I–V characteristics of a sub-90-nm metal-oxide-semiconductor field-effect transistor (MOSFET) in the linear and saturation regions for fast analytical calculation of the current. The model is based on the BSIM3v3 model. Instead of using constant threshold voltage and early voltage, as is assumed in the BSIM3v3 model, we define these voltages as functions of the gate-source voltage. The accuracy of the model is verified by comparison with HSPICE for the 90-, 65-, 45-, and 32-nm CMOS technologies. The model shows better accuracy than the nth-power and BSIM3v3 models. Then, we use the proposed I–V model to calculate the read static noise margin (SNM) of nano-scale conventional 6T static random-access memory (SRAM) cells with high accuracy. We calculate the read SNM by approximating the inverter transfer voltage characteristic of the cell in the regions where vertices of the maximum square of the butterfly curves are placed. The results for the SNM are also in excellent agreement with those of the HSPICE simulation for 90-, 65-, 45-, and 32-nm technologies. Verification in the presence of process variations and negative bias temperature instability (NBTI) shows that the model can accurately predict the minimum supply voltage required for a target yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, K., Nassif, S., 2008. The impact of random device variation on SRAM cell stability in sub-90-nm CMOS technologies. IEEE Trans. Very Large Scale Integr. Syst., 16(1):86–97. [doi:10.1109/TVLSI.2007.909792]

    Article  Google Scholar 

  • Bhavnagarwala, A.J., Austin, B.L., Bowman, K.A., Meindl, J.D., 2000. A minimum total power methodology for projecting limits on CMOS GSI. IEEE Trans. Very Large Scale Integr. Syst., 8(3):235–251. [doi:10.1109/92.845891]

    Article  Google Scholar 

  • Bhavnagarwala, A.J., Tang, X., Meindl, J.D., 2001. The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J. Sol.-State Circ., 36(4):658–665. [doi:10.1109/4.913744]

    Article  Google Scholar 

  • Calhoun, B., Chandrakasan, A., 2006. Static noise margin variation for sub-threshold SRAM in 65-nm CMOS. IEEE J. Sol.-State Circ., 41(7):1673–1679. [doi:10.1109/JSSC.2006.873215]

    Article  Google Scholar 

  • Chen, Q., Guha, A., Roy, K., 2007. An Accurate Analytical SNM Modeling Technique for SRAMs Based on Butterworth Filter Function. Proc. Int. Conf. on VLSI Design, p.615–620. [doi:10.1109/VLSID.2007.29]

  • Cheng, Y., Chan, M., Hui, K., Jeng, M.C., Liu, Z., Huang, J., Chen, K., Ko, P., Hu, C., 1995. BSIM3v3 MOSFET Model User’s Manual. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA.

    Google Scholar 

  • Chiulli, R.M., 1999. Quantitative Analysis: an Introduction. Gordon and Breach Science Publishers, Amsterdam, the Netherlands.

    Google Scholar 

  • Hiroki, A., Yamate, A., Yamada, M., 2008. An Analytical MOSFET Model Including Gate Voltage Dependence of Channel Length Modulation Parameter for 20nm CMOS. Proc. Int. Conf. on Electrical and Computer Engineering, p.139–143. [doi:10.1109/ICECE.2008.4769188]

  • Hu, V.P.H., Wu, Y.S., Fan, M.L., Su, P., Chuang, C.T., 2009. Static noise margin of ultrathin-body SOI subthreshold SRAM cells—an assessment based on analytical solutions of Poisson’s equation. IEEE Trans. Electron Dev., 56(9):2120–2127. [doi:10.1109/TED.2009.2026322]

    Article  Google Scholar 

  • Kang, K., Kufluoglu, H., Roy, K., Alam, M.A., 2007. Impact of negative-bias temperature instability in nanoscale SRAM array: modeling and analysis. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 26(10):1770–1781. [doi:10.1109/TCAD.2007.896317]

    Article  Google Scholar 

  • Li, Y., Hwang, C.H., Li, T.Y., 2009. Discrete-dopant-induced timing fluctuation and suppression in nanoscale CMOS circuit. IEEE Trans. Circ. Syst. II, 56(5):379–383. [doi:10.1109/TCSII.2009.2019168]

    Article  MathSciNet  Google Scholar 

  • Lohstroh, J., Seevinck, E., DeGroot, J., 1983. Worst-case static noise margin criteria for logic circuits and their mathematical equivalence. IEEE J. Sol.-State Circ., 18(6):803–807. [doi:10.1109/JSSC.1983.1052035]

    Article  Google Scholar 

  • Morshed, T.H., Yang, W., Dunga, M.V., Xi, X., He, J., Liu, W., Kanyu, Cao, M., Jin, X., Ou, J.J., et al., 2009. BSIM4.6.4 MOSFET Model User’s Manual. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA.

    Google Scholar 

  • Mukhopadhyay, S., Mahmoodi, H., Roy, K., 2005. Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 24(12): 1859–1880. [doi:10.1109/TCAD.2005.852295]

    Article  Google Scholar 

  • Orshansky, M., Nassif, S., Boning, D., 2008. Design for Manufacturability and Statistical Design: a Constructive Approach. Springer Science+Business Media, LLC, New York, USA.

    Google Scholar 

  • Park, H., Song, S.C., Woo, S.H., Abu-Rahma, M.H., Ge, L., Kang, M.G., Han, B.M., Wang, J., Choi, R., Yang, J.W., et al., 2010. Accurate Projection of Vccmin by Modeling Dual Slope in FinFET Based SRAM, and Impact of Long Term Reliability on End of Life Vccmin. Proc. IEEE Int. Reliability Physics Symp., p.1008–1013. [doi:10.1109/IRPS.2010.5488684]

  • Sakurai, T., Newton, A.R., 1990. Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE J. Sol.-State Circ., 25(2):584–594. [doi:10.1109/4.52187]

    Article  Google Scholar 

  • Sakurai, T., Newton, A.R., 1991. A simple MOSFET model for circuit analysis. IEEE Trans. Electron Dev., 38(4): 887–894. [doi:10.1109/16.75219]

    Article  Google Scholar 

  • Schroder, D.K., Babcock, J.A., 2003. Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing. J. Appl. Phys., 94(1):1–8. [doi:10.1063/1.1567461]

    Article  Google Scholar 

  • Seevinck, E., List, F., Lohstroh, J., 1987. Static-noise margin analysis of MOS transistors. IEEE J. Sol.-State Circ., 22(5):748–754. [doi:10.1109/JSSC.1987.1052809]

    Article  Google Scholar 

  • Tsividis, Y., 2003. Operation and Modeling of the MOS Transistor. Oxford University Press, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Afzali-Kusha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, B., Ebrahimi, B., Afzali-Kusha, A. et al. An accurate analytical I–V model for sub-90-nm MOSFETs and its application to read static noise margin modeling. J. Zhejiang Univ. - Sci. C 13, 58–70 (2012). https://doi.org/10.1631/jzus.C1100090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100090

Key words

CLC number

Navigation