Skip to main content
Log in

An anthropomorphic controlled hand prosthesis system

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Based on HIT/DLR (Harbin Institute of Technology/Deutsches Zentrum für Luft- und Raumfahrt) Prosthetic Hand II, an anthropomorphic controller is developed to help the amputees use and perceive the prosthetic hands more like people with normal physiological hands. The core of the anthropomorphic controller is a hierarchical control system. It is composed of a top controller and a low level controller. The top controller has been designed both to interpret the amputee's intensions through electromyography (EMG) signals recognition and to provide the subject-prosthesis interface control with electro-cutaneous sensory feedback (ESF), while the low level controller is responsible for grasp stability. The control strategies include the EMG control strategy, EMG and ESF closed loop control strategy, and voice control strategy. Through EMG signal recognition, 10 types of hand postures are recognized based on support vector machine (SVM). An anthropomorphic closed loop system is constructed to include the customer, sensory feedback system, EMG control system, and the prosthetic hand, so as to help the amputee perform a more successful EMG grasp. Experimental results suggest that the anthropomorphic controller can be used for multi-posture recognition, and that grasp with ESF is a cognitive dual process with visual and sensory feedback. This process while outperforming the visual feedback process provides the concept of grasp force magnitude during manipulation of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajiboye, A.B., Weir, R.F.F., 2005. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthetic control. IEEE Trans. Neur. Syst. Rehabil. Eng., 13(3):280–291. [doi:10.1109/TNSRE.2005.847357]

    Article  Google Scholar 

  • Antfolk, C., Balkenius, C., Lundborg, G., Rosén, B., Sebelius, F., 2010. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. BioMed. Eng. OnLine, 9:50. [doi:10.1186/1475-925X-9-50]

    Article  Google Scholar 

  • Bicchi, A., 2000. Hand for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom., 16(6):652–662. [doi:10.1109/70.897777]

    Article  Google Scholar 

  • Bitzer, S., van der Smagt, P., 2006. Learning EMG Control of a Robotic Hand: Towards Active Prostheses. IEEE Int. Conf. on Robotics and Automation, p.2819–2823. [doi:10.1109/ROBOT.2006.1642128]

  • Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc., 2(2):121–167. [doi:10.1023/A:1009715923555]

    Article  Google Scholar 

  • Castellini, C., van der Smagt, P., 2009. Surface EMG in advanced hand prosthetics. Biol. Cybern., 100(1):35–47. [doi:10.1007/s00422-008-0278-1]

    Article  Google Scholar 

  • Clement, R.G.E., Bugler, K.E., Oliver, C.W., 2011. Bionic prosthetic hands: a review of present technology and future aspirations. Surgeon, 9(6):336–340. [doi:10.1016/j.surge.2011.06.001]

    Article  Google Scholar 

  • Dario, P., Laschi, C., Carrozza, M.C., Guglielmelli, E., Teti, G., Massa, B., Zecca, M., Taddeucci, D., Leoni, F., 2002. An Integrated Approach for the Design and Development of a Grasping and Manipulation System in Humanoid Robotics. IEEE Int. Conf. on Robotics & Automation, 1:1–7.

    Google Scholar 

  • Davidovics, N.S., Fridman, G.Y., Chiang, B., Della Santina, C.C., 2011. Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(1):84–94. [doi:10.1109/TNSRE.2010.2065241]

    Article  Google Scholar 

  • Dechev, N., Cleghorn, W.L., Naumann, S., 2001. Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory, 36(10):1157–1173. [doi:10.1016/S0094-114X(01)00035-0]

    Article  MATH  Google Scholar 

  • Della Santina, C.C., Migliaccio, A.A., Patel, A.H., 2007. A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation. IEEE Trans. Biomed. Eng., 54(6):1016–1030. [doi:10.1109/TBME.2007.894629]

    Article  Google Scholar 

  • Diftler, M.A., Culbert, C.J., Ambrose, R.O., Platt, R. Jr., Bluethmann, W.J., 2003. Evolution of the NASA/DARPA Robonaut Control System. IEEE Int. Conf. on Robotics and Automation, 2:2543–2548. [doi:10.1109/ROBOT.2003.1241975]

    Google Scholar 

  • Edsinger-Gonzales, A., 2004. Design of a Compliant and Force Sensing Hand for a Humanoid Robot. Proc. Int. Conf. on Intelligent Manipulation and Grasping, p.291–295.

  • Graupe, D., Salahi, J., Kohn, K., 1982. Multifunction prosthesis and orthosis control via micro-computer identification of temporal pattern differences in single-site myoelectric signals. J. Biomed. Eng., 4(1):17–22. [doi:10.1016/0141-5425(82)90021-8]

    Article  Google Scholar 

  • Grill, W.M. Jr., Mortimer, J.T., 1996. The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans. Biomed. Eng., 43(2):161–166. [doi:10.1109/10.481985]

    Article  Google Scholar 

  • Huang, H., Jiang, L., Zhao, D.W., Zhao, J.D., Cai, H.G., Liu, H., Meusel, P., Willberg, B., Hirzinger, G., 2006. The Development on a New Biomechatronic Prosthetic Hand Based on Under-Actuated Mechanism. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3791–3796. [doi:10.1109/IROS.2006.281765]

  • Huang, H., Jiang, L., Pang, Y.J., Shi, S.C., Tang, Q.R., Yang, D.P., Liu, H., 2010. Observer-based dynamic control of an underactuated hand. Adv. Robot., 24(1–2):123–137. [doi:10.1163/016918609X12586151361812]

    Google Scholar 

  • Huang, H.P., Chen, C.Y., 1999. Development of a Myoelectric Discrimination System for a Multi-degree Prosthetic Hand. Proc. IEEE Int. Conf. on Robotics and Automation, p.2392–2397.

  • Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B., 2001. Design of the Utah/MIT Dextrous Hand. IEEE Int. Conf. on Robotics and Automation, p.1520–1532.

  • Kawasaki, H., Mouri, T., Ito, S., 2004. Toward Next Stage of Kinetic Humanoid Hand. 10th Int. Symp. on Robotics with Applications, p.129–134.

  • Keerthi, S.S., Lin, C.J., 2003. Asymptotic behaviors of support vector machines with Gaussian kernel. Neur. Comput., 15(7):1667–1689. [doi:10.1162/089976603321891855]

    Article  MATH  Google Scholar 

  • Kuiken, T., Marasco, P., Lock, B., Harden, R., Dewald, J., 2007. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. PNAS, 104(50):20061–20066. [doi:10.1073/pnas.0706525104]

    Article  Google Scholar 

  • Kumar, P., Sebastian, A., Potluri, C., Urfer, A., Naidu, D.S., Schoen, M.P., 2010. Towards Smart Prosthetic Hand: Adaptive Probability Based Skeletan Muscle Fatigue Model. 32nd Annual Int. Conf. IEEE EMBS, p.1316–1319. [doi:10.1109/IEMBS.2010.5626388]

  • Lee, H.C., Kang, B.J., Lee, E.C., Park, K.R., 2010. Finger vein recognition using weighted local binary pattern code based on a support vector machine. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(7):514–524. [doi:10.1631/jzus.C0910550]

    Article  Google Scholar 

  • Lee, S., Saridis, G.N., 1984. The control of a prosthetic arm by EMG pattern recognition. IEEE Trans. Autom. Control, 29(4):290–320. [doi:10.1109/TAC.1984.1103521]

    Article  Google Scholar 

  • Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M.H., Liu, Y.W., Wei, R., Xie, Z.W., 2007. The modular multisensory DLR-HIT-Hand. Mech. Mach. Theory, 42(5): 612–625. [doi:10.1016/j.mechmachtheory.2006.04.013]

    Article  MATH  Google Scholar 

  • Liu, Y.H., Huang, H.P., Weng, C.H., 2007. Recognition of electromyographic signals using cascaded kernel learning machine. IEEE/ASME Trans. Mechatron., 12(3):253–264. [doi:10.1109/TMECH.2007.897253]

    Article  Google Scholar 

  • Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., Melchiorri, C., 2005. Development of UB Hand 3: Early Results. Proc. IEEE Int. Conf. on Robotics and Automation, p.4488–4493. [doi:10.1109/ROBOT.2005.1570811]

  • Loucks, C.S., Johnson, V.J., Boissiere, P.T., Starr, G.P., Steele, J.P.H., 1987. Modeling and Control of the Stanford/JPL Hand. Int. Conf. on Robotics and Automation, p.573–578.

  • Merrill, D.R., Bikson, M., Jefferys, J.G., 2005. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods, 141(2):171–198. [doi:10.1016/j.jneumeth.2004.10.020]

    Article  Google Scholar 

  • Micera, S., Carpaneto, J., Raspopovic, S., 2010. Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng., 3:48–68. [doi:10.1109/RBME.2010.2085429]

    Article  Google Scholar 

  • Pylatiuk, C., Mounier, S., Kargov, A., Schulz, S., Bretthauer, G., 2004. Progress in the Development of a Multifunctional Hand Prosthesis. Proc. 26th Annual Int. Conf. IEEE EMBS, p.4260–4263.

    Google Scholar 

  • Rosen, B., Ehrsson, H., Antfolk, C., Cipriani, C., Sebelius, F., Lundborg, G., 2009. Referral of sensation to an advanced humanoid robotic hand prosthesis. J. Plast. Reconstr. Surg. Hand Surg., 43(5):260–266. [doi:10.3109/02844310903113107]

    Article  Google Scholar 

  • Scott, R.N., Caldwell, R.R., Britain, R.H., 1980. Sensory-feedback system compatible with myoelectric control. Med. Biol. Eng. Comput., 18(1):65–69. [doi:10.1007/BF02442481]

    Article  Google Scholar 

  • Shimizu, S., Shimojo, M., Sato, S., Seki, Y., Takahashi, A., Inukai, Y., Yoshioka, M., 1997. The Relationship Between Human Grip Types and Force Distribution Pattern in Grasping. Proc. 8th Int. Conf. on Advanced Robotics, p.299–304.

    Google Scholar 

  • Stepp, C.E., Matsuoka, Y., 2011. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(6): 677–685. [doi:10.1109/TNSRE.2011.2168981]

    Article  Google Scholar 

  • Taylor, C.L., Schwarz, R.J., 1955. The anatomy and mechanics of the human hand. Artif. Limbs, 2:22–35.

    Google Scholar 

  • Wimböck, T., Ott, C., Hirzinger, G., 2007. Impedance Behaviors for Two-Handed Manipulation: Design and Experiments. IEEE Int. Conf. on Robotics and Automation, p.4182–4189. [doi:10.1109/ROBOT.2007.364122]

  • Zhao, J.D., Xie, Z.W., Jiang, L., Cai, H.G., Liu, H., Hirzinger, G., 2005. Levenberg-Marquardt Based Neural Network Control for a Five-Fingered Prosthetic Hand. Proc. IEEE Int. Conf. on Robotics and Automation, p.4482–4487. [doi:10.1109/ROBOT.2005.1570810]

  • Zhao, J.D., Xie, W.X., Jiang, L., Cai, H.G., Liu, H., Hirzinger, G., 2006. A Five-Fingered Underactuated Prosthetic Hand Control Scheme. First IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, p.995–1000. [doi:10.1109/BIOROB.2006.1639221]

  • Zollo, L., Roccella, S., Tucci, R., Siciliano, B., Guglielmelli, E., Carrozza, M.C., Dario, P., 2006. BioMechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetics and Robotic Applications. First Int. Conf. on Biomedical Robotics and Biomechatronics, p.402–407. [doi:10.1109/BIOROB.2006.1639121]

  • Zollo, L., Roccella, S., Tucci, R., Siciliano, B., Guglielmelli, E., Carrozza, M.C., Dario, P., 2007. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans. Mechatron., 12(4):418–429. [doi:10.1109/TMECH.2007.901936]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Huang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51175106, 51209050, and 51205080), the Fundamental Research Funds for the Central Universities, China (No. HEUCFZ 1203), and the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (No. 1102)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Liu, H., Li, N. et al. An anthropomorphic controlled hand prosthesis system. J. Zhejiang Univ. - Sci. C 13, 769–780 (2012). https://doi.org/10.1631/jzus.C1100257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100257

Key words

CLC number

Navigation