Skip to main content
Log in

An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We present an iterative linear quadratic regulator (ILQR) method for trajectory tracking control of a wheeled mobile robot system. The proposed scheme involves a kinematic model linearization technique, a global trajectory generation algorithm, and trajectory tracking controller design. A lattice planner, which searches over a 3D (x, y, θ) configuration space, is adopted to generate the global trajectory. The ILQR method is used to design a local trajectory tracking controller. The effectiveness of the proposed method is demonstrated in simulation and experiment with a significantly asymmetric differential drive robot. The performance of the local controller is analyzed and compared with that of the existing linear quadratic regulator (LQR) method. According to the experiments, the new controller improves the control sequences (ν, ω) iteratively and produces slightly better results. Specifically, two trajectories, ‘S’ and ‘8’ courses, are followed with sufficient accuracy using the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arimoto, S., 1996. Control Theory of Nonlinear Mechanical Systems: a Passivity-Based and Circuit-Theoretic Approach. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Astudillo, L., Castillo, O., Aguilar, L.T., Martínez, R., 2007. Hybrid control for an autonomous wheeled mobile robot under perturbed torques. LNCS, 4529:594–603. [doi:10.1007/978-3-540-72950-1_59]

    Google Scholar 

  • Castillo, O., Aguilar, L.T., Cardenas, S., 2006. Fuzzy logic tracking control for unicycle mobile robots. Eng. Lett., 13(2):73–77.

    Google Scholar 

  • Divelbiss, A.W., Wen, J.T., 1997. Trajectory tracking control of a car-trailer system. IEEE Trans. Control Syst. Technol., 5(3):269–278. [doi:10.1109/87.572125]

    Article  Google Scholar 

  • Kolmanovsky, I., McClamroch, N.H., 1995. Developments in nonholonomic control systems. IEEE Control Syst. Mag., 15(6):20–36. [doi:10.1109/37.476384]

    Article  Google Scholar 

  • Kumar, U., Sukaranam, N., 2008. Backstepping based trajectory tracking control of a four wheeled mobile robot. Int. J. Adv. Robot. Syst., 5(4):403–410.

    Google Scholar 

  • Li, S.H., Tian, Y.P., 2000. Trajectory tracking control of mobile vehicle. Control Dec., 15(5):626–628.

    Google Scholar 

  • Likhachev, M., Ferguson, D., 2009. Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res., 28(8):933–945. [doi:10.1177/0278364909340445]

    Article  Google Scholar 

  • Luca, A.R., Benedetto, M.D., 1993. Control of nonholonomic systems via dynamic compensation. Kybernetica, 29(6): 593-608.

    Google Scholar 

  • Martínez, R., Castillo, O., Aguilar, L.T., 2009. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci., 179(13):2158–2174. [doi:10.1016/j. ins.2008.12.028]

    Article  MATH  Google Scholar 

  • Morin, P., Samson, C., 2000. Practical Stabilization of a Class of Nonlinear Systems. Application to Chained Systems and Mobile Robots. Proc. 39th IEEE Conf. on Decision Control, p.2989–2994. [doi:10.1109/CDC.2000.914274]

  • Narvydas, G., Simutis, R., Raudonis, V., 2007. Autonomous Mobile Robot Control Using Fuzzy Logic and Genetic Algorithm. 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, p.460–464. [doi:10.1109/IDAACS.2007.4488460]

  • Oriolo, G., de Luca, A., Vendittelli, M., 2002. WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans. Control Syst. Technol., 10(6):835–852. [doi:10.1109/TCST.2002.804116]

    Article  Google Scholar 

  • Pivtoraiko, M., Kelly, A., 2005. Generating Near Minimal Spanning Control Sets for Constrained Motion Planning in Discrete State Spaces. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3231–3237. [doi:10.1109/IROS.2005.1545046]

  • Pivtoraiko, M., Knepper, R.A., Kelly, A., 2009. Differentially constrained mobile robot motion planning in state lattices. J. Field Robot., 26(3):308–333. [doi:10.1002/rob.20285]

    Article  Google Scholar 

  • Samson, C., 1993. Time-varying feedback stabilization of car-like mobile robots. Int. J. Robot. Res., 12(1):55–64. [doi:10.1177/027836499301200104]

    Article  MathSciNet  Google Scholar 

  • Slotine, J.J.E., Li, W., 1987. On the adaptive control of robot manipulators. Int. J. Robot. Res., 6(3):49–59. [doi:10. 1177/027836498700600303]

    Article  Google Scholar 

  • Tomei, P., 2000. Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control, 45(11):2164–2169. [doi:10.1109/9.887661]

    Article  MathSciNet  MATH  Google Scholar 

  • Velagic, J., Osmic, N., Lacevic, B., 2008. Neural network controller for mobile robot motion control. World Acad. Sci. Eng. Technol., 47:193–198.

    Google Scholar 

  • Walsh, G., Tilbury, D., Sastry, S., Murray, R., Laumond, J.P., 1994. Stabilization of trajectories for systems with nonholonomic constraints. IEEE Trans. Autom. Control, 39(1):216–222. [doi:10.1109/9.273373]

    Article  MathSciNet  MATH  Google Scholar 

  • Whitcomb, L.L., Arimoto, S., Naniwa, T., Ozaki, F., 1996. Experiments in adaptive model-based robot force control. IEEE Control Syst. Mag., 16(1):49–57. [doi:10.1109/37.482150]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-wei Gong.

Additional information

Project (Nos. 90920304 and 91120015) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hj., Gong, Jw., Jiang, Y. et al. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot. J. Zhejiang Univ. - Sci. C 13, 593–600 (2012). https://doi.org/10.1631/jzus.C1100379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100379

Key words

CLC number

Navigation