Skip to main content
Log in

Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of −15–−12.5 dB at fixed f IF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28–35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred P1dB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm2 including pads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, M., Jacobsson, H., Aspemyr, L., Carchon, G., Sun, X., 2006. A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology. IEEE J. Sol.-State Circ., 41(10): 2257–2264. [doi:10.1109/JSSC.2006.881551]

    Article  Google Scholar 

  • Barker, G.K., Badawi, M.H., Mun, J., 1984. 60GHz monolithic GaAs front-end circuit for reciver applications. Electron. Lett., 20(8):334–335. [doi:10.1049/el:19840226]

    Article  Google Scholar 

  • Chiang, P.Y., Su, C.W., Luo, S.Y., Hu, R., Jou, C.F., 2010. Wide-IF-band CMOS mixer design. IEEE Trans. Microw. Theory Techn., 58(4):831–840. [doi:10.1109/TMTT.2010.2041575]

    Article  Google Scholar 

  • Chiou, H.K., Lin, J.Y., 2011. Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer designs. IEEE Trans. Microw. Theory Technol., 59(6):1529–1538. [doi:10.1109/TMTT.2011.2140123]

    Article  MathSciNet  Google Scholar 

  • Chiou, H.K., Yang, T.Y., Hsu, Y.C., Lin, S.G., Juang, Y.Z., 2007. 15-60 GHz asymmetric broadside coupled balun in 0.18 μm CMOS technology. Electron. Lett., 43(19): 1028–1030. [doi:10.1049/EL:20071200]

    Article  Google Scholar 

  • Hwang, Y.J., Wang, H., Chu, T.H., 2004. A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer. IEEE Microw. Wirel. Comp. Lett., 14(7):313–315. [doi:10.1109/LMWC.2004.829256]

    Article  Google Scholar 

  • Lin, C.H., Lai, Y.A., Chiu, J.C., Wang, Y.H., 2007. A 23–37 GHz miniature MMIC subharmonic mixer. IEEE Microw. Wirel. Comp. Lett., 17(9):679–681. [doi:10.1109/LMWC.2007.903460]

    Article  Google Scholar 

  • Lin, C.M., Lin, H.K., Lai, Y.A., Chang, C.P., Wang, Y.H., 2009. A 10–40 GHz broadband subharmonic monolithic mixer in 0.18-μm CMOS technology. IEEE Microw. Wirel. Comp. Lett., 19(2):95–97. [doi:10.1109/LMWC.2008.2011330]

    Article  Google Scholar 

  • Sun, M., Zhang, Y.P., Liu, D.X., Chua, K.M., Wai, L.L., 2011. A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver. IEEE Trans. Antennas Propag., 59(6):2134–2140. [doi:10.1109/TAP.2011.2143669]

    Article  Google Scholar 

  • Wang, N.Y., Wu, H., Liu, J.Y.C., Chang, M.C.F., 2011. 65-nm CMOS receiver with 4.2 dB NF and 66 dB gain for 60 GHz applications. Electron. Lett., 47(1):15–17. [doi:10.1049/EL.2010.3049]

    Article  MATH  Google Scholar 

  • Wei, H.J., Meng, C., Wu, P.Y., Tsung, K.C., 2008. K-band CMOS sub-harmonic resistive mixer with a miniature Marchand balun on lossy silicon substrate. IEEE Microw. Wirel. Comp. Lett., 18(1):40–42. [doi:10.1109/LMWC.2007.911991]

    Article  Google Scholar 

  • Xu, L.J., Wang, Z.G., Li, Q., 2009. Design and analysis of millimeter-wave Marchand balun with interconnected transmission line. J. Infr. Millim. Terahertz Waves, 30(7): 738–745. [doi:10.1007/S10762-009-9504-8]

    Article  Google Scholar 

  • Yeh, P.C., Liu, W.C., Chiou, H.K., 2005. Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element highpass/band-pass balun. IEEE Microw. Wirel. Comp. Lett., 15(2):62–64. [doi:10.1109/LMWC.2004.842814]

    Article  Google Scholar 

  • Yu, H.Y., Choi, S.S., Kim, S.H., Kim, Y.H., 2007. K-band balun with slot pattern ground for wide operation using 0.18 μm CMOS technology. Electron. Lett., 43(5):293. [doi:10.1049/EL:20070092]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge-liang Yang or Zhi-gong Wang.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2010CB327404), the National High-Tech R&D Program (863) of China (No. 2011AA10305), and the National Natural Science Foundation of China (No. 60901012)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Gl., Wang, Zg., Li, Zq. et al. Ka-band ultra low voltage miniature sub-harmonic resistive mixer with a new broadside coupled Marchand balun in 0.18-μm CMOS technology. J. Zhejiang Univ. - Sci. C 14, 288–295 (2013). https://doi.org/10.1631/jzus.C1200369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200369

Key words

CLC number

Navigation