Skip to main content
Log in

Low temperature Si/Si wafer direct bonding using a plasma activated method

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper presents a low temperature wafer direct bonding process assisted by O2 plasma. Silicon wafers were treated with wet chemical cleaning and subsequently activated by O2 plasma in the etch element of a sputtering system. Then, two wafers were brought into contact in the bonder followed by annealing in N2 atmosphere for several hours. An infrared imaging system was used to detect bonding defects and a razor blade test was carried out to determine surface energy. The bonding yield reaches 90%–95% and the achieved surface energy is 1.76 J/m2 when the bonded wafers are annealed at 350 °C in N2 atmosphere for 2 h. Void formation was systematically observed and elimination methods were proposed. The size and density of voids greatly depend on the annealing temperature. Short O2 plasma treatment for 60 s can alleviate void formation and enhance surface energy. A pulling test reveals that the bonding strength is more than 11.0 MPa. This low temperature wafer direct bonding process provides an efficient and reliable method for 3D integration, system on chip, and MEMS packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Christiansen, S.H., Singh, R., Gösele, U., 2006. Wafer direct bonding: from advanced substrate engineering to future applications in micro/nanoelectronics. Proc. IEEE, 94(12):2060–2106. [doi:10.1109/JPROC.2006.886026]

    Article  Google Scholar 

  • Dunare, C., Cernica, I., Popescu, D., Popescu, A., Cristea, D., Modreanu, M., Manea, E., 2000. SOI Materials for MOEMS Obtained by Silicon Direct Bondig Technique. Proc. Int. Semiconductor Conf., p.531–534.

    Google Scholar 

  • Eichler, M., Michel, B., Thomas, M., Gabriel, M., Klages, C.P., 2008. Atmospheric-pressure plasma pretreatment for direct bonding of silicon wafers at low temperatures. Surf. Coat. Technol., 203(5–7):826–829. [doi:10.1016/j.surfcoat.2008.06.054]

    Article  Google Scholar 

  • Gösele, U., Tong, Q.Y., 1998. Semiconductor wafer bonding. Ann. Rev. Mater. Sci., 28(1):215–241. [doi:10.1146/annurev.matsci.28.1.215]

    Article  Google Scholar 

  • Howlader, M.M.R., Zhang, F., 2010. Void-free strong bonding of surface activated silicon wafers from room temperature to annealing at 600 °C. Thin Sol. Films, 519(2):804–808. [doi:10.1016/j.tsf.2010.08.144]

    Article  Google Scholar 

  • Huang, Y., Ergun, A.S., Hæggström, E., Badi, M.H., Khuri-Yakub, B.T., 2003. Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology. J. Microelectromech. Syst., 12(2):128–137. [doi:10.1109/JMEMS.2003.809968]

    Article  Google Scholar 

  • Ko, C.T., Chen, K.N., 2010. Wafer-level bonding/stacking technology for 3D integration. Microelectron. Rel., 50(4): 481–488. [doi:10.1016/j.microrel.2009.09.015]

    Article  MathSciNet  Google Scholar 

  • Kondou, R., Wang, C.X., Shigetou, A., Suga, T., 2012. Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding. Microelectron. Rel., 52(2):342–346. [doi:10.1016/j.microrel.2010.12.006]

    Article  Google Scholar 

  • Kowal, J., Nixon, T., Aitken, N., 2009. Surface activation for low temperature wafer fusion bonding by radicals produced in an oxygen discharge. Sens. Actuat. A, 155(1):145–151. [doi:10.1016/j.sna.2009.08.018]

    Article  Google Scholar 

  • Lai, S.I., Lin, H.Y., Hu, C.T., 2004. Effect of surface treatment on wafer direct bonding process. Mater. Chem. Phys., 83(2-3):265–272. [doi:10.1016/j.matchemphys.2003.09.024]

    Article  Google Scholar 

  • Lin, X.H., Shi, T.L., Liao, G.L., Tang, Z.R., Liu, S.Y., Nie, L., 2007. UV Enhanced Low Temperature Wafer Direct Bonding and Interface Quality Test. Proc. 7th IEEE Int. Conf. on Nanotechnology, p.754–758. [doi:10.1109/NANO.2007.4601296]

    Google Scholar 

  • Pasquariello, D., Camacho, M., Hjort, K., Dózsa, L., Szentpáli, B., 2001. Evaluation of InP-to-silicon heterobonding. Mater. Sci. Eng. B, 80(1–3):134–137. [doi:10.1016/S0921-5107(00)00626-7]

    Article  Google Scholar 

  • Plach, T., Hingerl, K., Dragoi, V., Wimplinger, M., 2012. Low Temperature Plasma Activated Direct Wafer Bonding. 3rd IEEE Int. Workshop on Low Temperature Bonding for 3D Integration, p.145. [doi:10.1109/LTB-3D.2012.6238072]

    Chapter  Google Scholar 

  • Plößl, A., Kräuter, G., 1999. Wafer direct bonding: tailoring adhesion between brittle materials. Mater. Sci. Eng. R, 25(1-2):1–88. [doi:10.1016/S0927-796X(98)00017-5]

    Article  Google Scholar 

  • Reiche, M., 2006. Semiconductor wafer bonding. Phys. Stat. Sol. A, 203(4):747–759. [doi:10.1002/pssa.200564509]

    Article  Google Scholar 

  • Schmidt, M.A., 1998. Wafer-to-wafer bonding for microstructure formation. Proc. IEEE, 86(8):1575–1585. [doi:10.1109/5.704262]

    Article  Google Scholar 

  • Seok, S., Rolland, N., Rolland, P.A., 2008. A novel packaging method using wafer-level BCB polymer bonding and glass wet-etching for RF applications. Sens. Actuat. A, 147(2):677–682. [doi:10.1016/j.sna.2008.06.008]

    Article  Google Scholar 

  • Sohn, Y.C., Wang, Q., Ham, S.J., Jeong, B.G., Jung, K.D., Choi, M.S., Kim, W.B., Moon, C.Y., 2007. Wafer-Level Low Temperature Bonding with Au-In System. Proc. 57th Electronic Components and Technology Conf., p.633–637. [doi:10.1109/ECTC.2007.373863]

    Chapter  Google Scholar 

  • Suga, T., Kim, T.H., Howlader, M.M.R., 2004. Combined Process for Wafer Direct Bonding by Means of the Surface Activation Method. Proc. 54th Electronic Components and Technology Conf., p.484–490.

    Google Scholar 

  • Taniyama, S., Wang, Y.H., Fujino, M., Suga, T., 2008. Room Temperature Wafer Bonding Using Surface Activated Bonding Method. IEEE 9th VLSI Packaging Workshop in Japan, p.141–144. [doi:10.1109/VPWJ.2008.4762236]

    Chapter  Google Scholar 

  • Tsau, C.H., Spearing, S.M., Schmidt, M.A., 2004. Wafer-level thermocompression bonds. J. Microelectromech. Syst., 13(6):963–971. [doi:10.1109/JMEMS.2004.838393]

    Article  Google Scholar 

  • Wang, C.X., Higurashi, E., Suga, T., 2007. Room Temperature Si/Si Wafer Direct Bonding in Air. 8th Int. Conf. on Electronic Packaging Technology, p.1–6. [doi:10.1109/ICEPT.2007.4441488]

    Google Scholar 

  • Zhang, X.X., Raskin, J.P., 2005. Low-temperature wafer bonding: a study of void formation and influence on bonding strength. J. Microelectromech. Syst., 14(2): 368–382. [doi:10.1109/JMEMS.2004.839027]

    Article  Google Scholar 

  • Zhao, Y.L., Song, Z.J., Li, Y., 2012. Low Temperature Wafer Direct Bonding Using Wet Chemical Treatment. 3rd Int. Conf. on Manufacturing Science and Engineering, p.2381–2384. [doi:10.4028/www.scientific.net/AMR.482-484.2381]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-ling Li.

Additional information

Project supported by the Foreign Cultural and Educational Experts Employing Plan, Ministry of Education, China (No. TS2010CQDX 056) and the Fundamental Research Funds for the Central Universities, China (No. CDJZR12135502)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Dl., Shang, Zg., Wang, Sq. et al. Low temperature Si/Si wafer direct bonding using a plasma activated method. J. Zhejiang Univ. - Sci. C 14, 244–251 (2013). https://doi.org/10.1631/jzus.C12MNT02

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C12MNT02

Key words

CLC number

Navigation