Skip to main content
Log in

Notes and correspondence on ensemble-based three-dimensional variational filters

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Several ensemble-based three-dimensional variational (3D-Var) filters are compared. These schemes replace the static background error covariance of the traditional 3D-Var with the ensemble forecast error covariance, but generate analysis ensemble anomalies (perturbations) in different ways. However, it is demonstrated in this paper that they are all theoretically equivalent to the ensemble transformation Kalman filter (ETKF). Furthermore, a new method named EnPSAS is presented. The analysis shows that EnPSAS has a small condition number and can apply covariance localization more easily than other ensemble-based 3D-Var methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bishop, C.H., Etherton, B.J., Majumdar, S.J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev., 129(3):420–436. [doi:10.1175/1520-0493(2001)129〈0420:ASWTET〉2.0.CO;2]

    Article  Google Scholar 

  • Buehner, M., 2005. Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc., 131(607):1013–1043. [doi:10.1256/qj.04.15]

    Article  Google Scholar 

  • Cohn, S.E., da Silva, A., Guo, J., Sienkiewicz, M., Lamich, D., 1998. Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126(11):2913–2926. [doi:10.1175/1520-0493(1998)126〈2913:ATEODS〉2.0.CO;2]

    Article  Google Scholar 

  • Golub, G., van Loan, C., 1996. Matrix Computations. The Johns Hopkins University Press, London.

    MATH  Google Scholar 

  • Gustafsson, N., Berre, L., Hornquist, S., Huang, X.Y., Lindskog, M., Navascues, B., Mogensen, K.S., Thorsteinsson, S., 2001. Three-dimensional variational data assimilation for a limited area model. Tellus, 53A:425–446.

    Google Scholar 

  • Haben, S.A., Lawless, A.S., Nichols, N.K., 2011a. Conditioning of incremental variational data assimilation, with application to the Met Office system. Tellus, 63A:782–792.

    Google Scholar 

  • Haben, S.A., Lawless, A.S., Nichols, N.K., 2011b. Conditioning and preconditioning of the variational data assimilation problem. Comput. Fluids, 46(1):252–256. [doi:10.1016/j.compfluid.2010.11.025]

    Article  MATH  Google Scholar 

  • Hamill, T.M., Snyder, C., 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128(8):2905–2919. [doi:10.1175/1520-0493(2000)128〈29 05:AHEKFV〉2.0.CO;2]

    Article  Google Scholar 

  • Hamill, T.M., Whitaker, J.S., Snyder, C., 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129(11):2776–2790. [doi:10.1175/1520-0493(2001)129〈2776:DDFOBE〉2.0.CO;2]

    Article  Google Scholar 

  • Hunt, B.R., Kostelich, E.J., Szunyogh, I., 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys. D, 230(1–2):112–126. [doi:10.1016/j.physd.2006.11.008]

    Article  MathSciNet  MATH  Google Scholar 

  • Janjić, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S., 2011. On domain localization in ensemble-based Kalman filter algorithms. Mon. Wea. Rev., 139(7):2046–2060. [doi:10.1175/2011MWR3552.1]

    Article  Google Scholar 

  • Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Academic Press, New York and London.

    MATH  Google Scholar 

  • Liu, C., Xiao, Q., Wang, B., 2008. An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test. Mon. Wea. Rev., 136(9):3363–3373. [doi:10.1175/2008MWR2312.1]

    Article  Google Scholar 

  • Liu, C., Xiao, Q., Wang, B., 2009. An ensemble-based four-dimensional variational data assimilation scheme. Part II: observing system simulation experiments with advanced research WRF (ARW). Mon. Wea. Rev., 137(5):1687–1704. [doi:10.1175/2008MWR2699.1]

    Article  Google Scholar 

  • Lorenc, A.C., 1997. Development of an operational variational assimilation scheme. J. Meteorol. Soc. Jpn., 75:339–346.

    Google Scholar 

  • Lorenc, A.C., 2003. The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Q. J. R. Meteorol. Soc., 129(595):3183–3203. [doi:10.1256/qj.02.132]

    Article  Google Scholar 

  • Pan, X., Tian, X., Li, X., Xie, Z., Shao, A., Lu, C., 2012. Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J. Geophys. Res., 117(D17113). [doi:10.1029/2012JD017684]

    Google Scholar 

  • Parrish, D.F., Derber, J.C., 1992. The national meteorological center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120(8):1747–1763. [doi:10.1175/1520-0493(1992)120〈1747:TNMCSS〉2.0.CO;2]

    Article  Google Scholar 

  • Tian, X., Xie, Z., Sun, Q., 2011. A POD-based ensemble four-dimensional variational assimilation method. Tellus, 63A: 805–816.

    Google Scholar 

  • van Leeuwen, P.J., Evensen, G., 1996. Data assimilation and inverse methods in terms of probabilistic formulation. Mon. Wea. Rev., 124(12):2898–2913. [doi:10.1175/1520-0493(1996)124〈2898:DAAIMI〉2.0.CO;2]

    Article  Google Scholar 

  • Wang, X., Snyder, C., Hamill, T.M., 2007. Notes and correspondence on the theoretical equivalence of differently proposed ensemble/3D-Var hybrid analysis schemes. Mon. Wea. Rev., 135(1):222–227. [doi:10.1175/MWR3282.1]

    Article  Google Scholar 

  • Wang, X., Barker, D.M., Snyder, C., Hamill, T.M., 2008. A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: observing system simulation experiment. Mon. Wea. Rev., 136(12):5116–5131. [doi:10.1175/2008MWR2444.1]

    Article  Google Scholar 

  • Yang, S., Kalnay, E., Hunt, B., Bowler, N.E., 2009. Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Q. J. R. Meteorol. Soc., 135(638):251–262. [doi:10.1002/qj.353]

    Article  Google Scholar 

  • Zupanski, M., 2005. Maximum likelihood ensemble filter: theoretical aspects. Mon. Wea. Rev., 133(6):1710–1726. [doi:10.1175/MWR2946.1]

    Article  Google Scholar 

  • Zupanski, M., Navon, I.M., Zupanski, D., 2008. The maximum likelihood ensemble filter as a non-differentiable minimization algorithm. Q. J. R. Meteorol. Soc., 134(633): 1039–1050. [doi:10.1002/qj.251]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ze Leng.

Additional information

Project supported by the National Natural Science Foundation of China (No. 41105063) and the Special Fund for Meteorological Scientific Research in the Public Interest (No. GYHY20100615)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, Hz., Song, Jq., Yin, Fk. et al. Notes and correspondence on ensemble-based three-dimensional variational filters. J. Zhejiang Univ. - Sci. C 14, 634–641 (2013). https://doi.org/10.1631/jzus.C1300024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300024

Key words

CLC number

Navigation