Skip to main content
Log in

Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We develop a new kind of underwater inductive coupling power transfer (ICPT) system to evaluate wireless power transfer in autonomous underwater vehicle (AUV) docking applications. Parameters that determine the performance of the system are systematically analyzed through mathematical methods. A circuit simulation model and a finite element analysis (FEA) simulation model are developed to study the power losses of the system, including copper loss in coils, semiconductor loss in circuits, and eddy current loss in transmission media. The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems. Calculation results and simulation results are validated by relevant experiments of the prototype system. The output power of the prototype system is up to 45 W and the efficiency is up to 0.84. The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage. When the output power reaches 500 W, the efficiency is expected to exceed 0.94. The efficiency can be further improved by choosing proper semiconductors and coils. The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babic, S., Akyel, C., 2000. Improvement in calculation of the self- and mutual inductance of thin-wall solenoids and disk coils. IEEE Trans. Magn., 36(4):1970–1975. [doi:10.1109/TMAG.2000.875240]

    Article  Google Scholar 

  • Dodd, C.V., Deeds, W.E., 1968. Analytical solutions to eddy current probe coil problems. J. Appl. Phys., 39(6):2829–2838. [doi:10.1063/1.1656680]

    Article  Google Scholar 

  • Dukju, A., Songcheol, H., 2013. A study on magnetic field repeater in wireless power transfer. IEEE Trans. Ind. Electron., 60(1):360–371. [doi:10.1109/TIE.2012.2188254]

    Article  Google Scholar 

  • Ghahary, A., Cho, B.H., 1992. Design of transcutaneous energy transmission system using a series resonant converter. IEEE Trans. Ind. Electron., 7(2):261–269. [doi:10.1109/63.136242]

    Google Scholar 

  • Han, J., Asada, A., Ura, T., et al., 2007. Noncontact power supply for seafloor geodetic observing robot system. J. Mar. Sci. Tech., 12(3):183–189. [doi:10.1007/s00773-006-0235-4]

    Article  Google Scholar 

  • Howe, B.M., McGinnis, T., Gobat, J., 2006. Moorings for ocean observatories: continuous and adaptive sampling. Scientific Submarine Cable Conf., p.172–181.

    Google Scholar 

  • Hurley, W.G., Gath, E., Breslin, J.G., 2000. Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms. IEEE Trans. Power Electron., 15(2):369–376. [doi:10.1109/63.838110]

    Article  Google Scholar 

  • Kim, Y.H., Jin, K.H., 2012. A contactless power transfer system using a series-series-parallel resonant converter. Int. J. Electron., 99(7):885–897. [doi:10.1080/00207217.2011.653947]

    Article  Google Scholar 

  • Kojiya, T., Sato, F., Matsuki, H., et al., 2004. Automatic power supply system to underwater vehicles utilizing non-contacting technology. Oceans, p.2341–2345. [doi:10.1109/OCEANS.2004.1406521]

    Google Scholar 

  • Li, Z., Li, D., Lin, L., et al., 2010. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(10):824–834. [doi:10.1631/jzus.C0910711]

    Article  Google Scholar 

  • Low, Z.N., Chinga, R.A., Tseng, R., et al., 2009. Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron., 56(5):1801–1812. [doi:10.1109/TIE.2008.2010110]

    Article  Google Scholar 

  • McEwen, R.S., Hobson, B.W., McBride, L., et al., 2008. Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng., 33(4):550–562. [doi:10.1109/JOE.2008.2005348]

    Article  Google Scholar 

  • Moulder, J.C., Tai, C.C., Larson, B.F., et al., 1998. Inductance of a coil on a thick ferromagnetic metal plate. IEEE Trans. Magn., 34(2):505–514. [doi:10.1109/20.661482]

    Article  Google Scholar 

  • Ota, Y., Takura, T., Sato, F., et al., 2011. Impedance matching method about multiple contactless power feeding system for portable electronic devices. IEEE Trans. Magn., 47(10):4235–4237. [doi:10.1109/TMAG.2011.2156399]

    Article  Google Scholar 

  • Papastergiou, K.D., Macpherson, D.E., 2007a. An airborne radar power supply with contactless transfer of energy. Part I: rotating transformer. IEEE Trans. Ind. Electron., 54(5):2874–2884. [doi:10.1109/TIE.2007.902044]

    Google Scholar 

  • Papastergiou, K.D., Macpherson, D.E., 2007b. An airborne radar power supply with contactless transfer of energy. Part II: converter design. IEEE Trans. Ind. Electron., 54(5):2885–2893. [doi:10.1109/TIE.2007.901370]

    Google Scholar 

  • Podder, T., Sibenac, M., Bellingham, J., 2004. AUV docking system for sustainable science missions. IEEE Int. Conf. on Robotics & Automation, p.4478–4484. [doi:10.1109/ROBOT.2004.1302423]

    Google Scholar 

  • Pyle, D., Granger, R., Geoghegan, B., et al., 2012. Leveraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs. Oceans, p.1–8. [doi:10.1109/OCEANS.2012.6404932]

    Google Scholar 

  • Scott, K.L., 1930. Variation of the inductance of coils due to the magnetic shielding effect of eddy currents in the cores. Proc. IRE, 18(10):1750–1764. [doi:10.1109/JRPROC.1930.221920]

    Article  Google Scholar 

  • Sibue, J.R., Meunier, G., Ferrieux, J.P., et al., 2013. Modeling and computation of losses in conductors and magnetic cores of a large air gap transformer dedicated to contactless energy transfer. IEEE Trans. Magn., 49(1):586–590. [doi:10.1109/TMAG.2012.2211031]

    Article  Google Scholar 

  • Taheri, S., Gholami, A., Fofana, I., et al., 2011. Modeling and simulation of transformer loading capability and hot spot temperature under harmonic conditions. Electr. Power Syst. Res., 86:68–75. [doi:10.1016/j.epsr.2011.12.005]

    Article  Google Scholar 

  • Villa, J.L., Sallan, J., Sanz Osorio, J.F., et al., 2012. High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans. Ind. Electron., 59(2):945–951. [doi:10.1109/TIE.2011.2161055]

    Article  Google Scholar 

  • Wang, C.S., Covic, G.A., Stielau, O.H., 2004. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron., 51(1):148–157. [doi:10.1109/TIE.2003.822038]

    Article  Google Scholar 

  • Zargham, M., Gulak, P.G., 2012. Maximum achievable efficiency in near-field coupled power-transfer systems. IEEE Trans. Biomed. Circ. Syst., 6(3):228–245. [doi:10.1109/TBCAS.2011.2174794]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-jun Li.

Additional information

Project supported by the National High-Tech R&D Program of China (No. 2013AA09A414), the National Natural Science Foundation of China (No. 51221004), and the Interdisciplinary Research Foundation of Zhejiang University (No. 2012HY003A)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Jg., Li, Dj. & Yang, Cj. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications. J. Zhejiang Univ. - Sci. C 15, 51–62 (2014). https://doi.org/10.1631/jzus.C1300171

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300171

Key words

CLC number

Navigation