Skip to main content
Log in

A deep learning approach to the classification of 3D CAD models

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Model classification is essential to the management and reuse of 3D CAD models. Manual model classification is laborious and error prone. At the same time, the automatic classification methods are scarce due to the intrinsic complexity of 3D CAD models. In this paper, we propose an automatic 3D CAD model classification approach based on deep neural networks. According to prior knowledge of the CAD domain, features are selected and extracted from 3D CAD models first, and then preprocessed as high dimensional input vectors for category recognition. By analogy with the thinking process of engineers, a deep neural network classifier for 3D CAD models is constructed with the aid of deep learning techniques. To obtain an optimal solution, multiple strategies are appropriately chosen and applied in the training phase, which makes our classifier achieve better performance. We demonstrate the efficiency and effectiveness of our approach through experiments on 3D CAD model datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bai, J., Gao, S., Tang, W., et al., 2010. Design reuse oriented partial retrieval of CAD models. Comput.-Aided Des., 42(12):1069–1084. [doi:10.1016/j.cad.2010.07.002]

    Article  Google Scholar 

  • Barutcuoglu, Z., DeCoro, C., 2006. Hierarchical shape classification using Bayesian aggregation. IEEE Int. Conf. on Shape Modeling and Applications, p.44–48. [doi:10.1109/ SMI.2006.15]

    Google Scholar 

  • Bengio, Y., 2009. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1–127. [doi:10.1561/2200000 006]

    Article  MATH  MathSciNet  Google Scholar 

  • Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828. [doi:10. 1109/TPAMI.2013.50]

    Article  Google Scholar 

  • Bergstra, J., Breuleux, O., Bastien, F., et al., 2010. Theano: a CPU and GPU math compiler in Python. Proc. 9th Python in Science Conf., p.1–7.

    Google Scholar 

  • Bimbo, A.D., Pala, P., 2006. Content-based retrieval of 3D models. ACM Trans. Multim. Comput. Commun. Appl., 2(1):20–43. [doi:10.1145/1126004.1126006]

    Article  Google Scholar 

  • Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, Oxford.

    Google Scholar 

  • Bordes, A., Glorot, X., Weston, J., et al., 2014. A semantic matching energy function for learning with multirelational data. Mach. Learn., 94(2):233–259. [doi:10. 1007/s10994-013-5363-6]

    Article  MathSciNet  Google Scholar 

  • Chen, D., 2003. Three-Dimensional Model Shape Description and Retrieval Based on Light Field Descriptors. PhD Thesis, National Taiwan University, Taiwan.

    Google Scholar 

  • Chen, D., Tian, X., Shen, Y., et al., 2003. On visual similarity based 3D model retrieval. Comput. Graph. Forum, 22(3):223–232. [doi:10.1111/1467-8659.00669]

    Article  Google Scholar 

  • Dreiseitl, S., Ohno-Machado, L., 2002. Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform., 35(5):352–359. [doi:10.1016/S1532-0464(03)00034-0]

    Article  Google Scholar 

  • Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classification (2nd Ed.). John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Fang, X., Luo, H., Tang, J., 2005. Structural damage detection using neural network with learning rate improvement. Comput. & Struct., 83(25–26):2150–2161. [doi:10.1016/j. compstruc.2005.02.029]

    Article  Google Scholar 

  • Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. Proc. Int. Conf. on Artificial Intelligence and Statistics, p.249–256.

    Google Scholar 

  • Gunn, T.G., 1982. The mechanization of design and manufacturing. Sci. Am., 247:114–130. [doi:10.1038/scientifica merican0982-114]

    Article  Google Scholar 

  • Haykin, S., 2008. Neural Networks and Learning Machines (3rd Ed.). Prentice Hall, New York.

    Google Scholar 

  • Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507. [doi:10.1126/science.1127647]

    Article  MATH  MathSciNet  Google Scholar 

  • Hou, S., Lou, K., Ramani, K., 2005. SVM-based semantic clustering and retrieval of a 3D model database. Comput. Aided Des. Appl., 2(1–4):155–164.

    Google Scholar 

  • Huang, F.J., LeCun, Y., 2006. Large-scale learning with SVM and convolutional nets for generic object categorization. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.284–291. [doi:10.1109/CVPR. 2006.164]

    Chapter  Google Scholar 

  • Ip, C.Y., Regli, W.C., 2005a. Content-based classification of CAD models with supervised learning. Comput. Aided Des. Appl., 2(5):609–617.

    Google Scholar 

  • Ip, C.Y., Regli, W.C., 2005b. Manufacturing classification of CAD models using curvature and SVMs. Int. Conf. on Shape Modeling and Applications, p.361–365. [doi:10. 1109/SMI.2005.27]

    Google Scholar 

  • Ip, C.Y., Regli, W.C., Sieger, L., et al., 2003. Automated learning of model classifications. Proc. 8th ACM Symp. on Solid Modeling and Applications, p.322–327. [doi:10. 1145/781606.781659]

    Chapter  Google Scholar 

  • Iyer, N., Jayanti, S., Lou, K., et al., 2005. Three-dimensional shape searching: state-of-the-art review and future trends. Comput.-Aided Des., 37(5):509–530. [doi:10.1016/j.cad. 2004.07.002]

    Article  Google Scholar 

  • Kavukcuoglu, K., Sermanet, P., Boureau, Y., et al., 2010. Learning convolutional feature hierarchies for visual recognition. Proc. 24th Annual Conf. on Neural Information Processing Systems, p.1090–1098.

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Proc. 26th Annual Conf. on Neural Information Processing Systems, p.1106–1114.

    Google Scholar 

  • Larochelle, H., Bengio, Y., Louradour, J., et al., 2009. Exploring strategies for training deep neural networks. J. Mach. Learn. Res., 10(1):1–40.

    MATH  Google Scholar 

  • Ngiam, J., Chen, Z., Koh, P.W., et al., 2011. Learning deep energy models. Proc. 28th Int. Conf. on Machine Learning, p.1105–1112.

    Google Scholar 

  • Prechelt, L., 1998. Automatic early stopping using cross validation: quantifying the criteria. Neur. Networks, 11(4):761–767. [doi:10.1016/S0893-6080(98)00010-0]

    Article  Google Scholar 

  • Ranzato, M.A., Mnih, V., Hinton, G.E., 2010. Generating more realistic images using gated MRF’s. Proc. 24th Annual Conference on Neural Information Processing Systems, p.2002–2010.

    Google Scholar 

  • Reed, R., 1993. Pruning algorithms—a survey. IEEE Trans. Neur. Networks, 4(5):740–747. [doi:10.1109/72.248452]

    Article  Google Scholar 

  • Shilane, P., Min, P., Kazhdan, M., et al., 2004. The Princeton Shape Benchmark. Proc. Conf. on Shape Modeling Applications, p.167–178. [doi:10.1109/SMI.2004.1314504]

    Google Scholar 

  • Wang, W., Liu, X., Liu, L., 2013. Shape matching and retrieval based on multiple feature descriptors. Comput. Aided Draft. Des. Manuf., 23(1):60–67.

    Google Scholar 

  • Wei, W., Yang, Y., Lin, J., et al., 2008. Color-based 3D model classification using Hopfield neural network. Proc. Int. Conf. on Computer Science and Software Engineering, p.883–886. [doi:10.1109/CSSE.2008.1177]

    Google Scholar 

  • Wu, M.C., Jen, S.R., 1996. A neural network approach to the classification of 3D prismatic parts. Int. J. Adv. Manuf. Technol., 11(5):325–335. [doi:10.1007/BF01845691]

    Article  Google Scholar 

  • Yao, Y., Rosasco, L., Caponnetto, A., 2007. On early stopping in gradient descent learning. Constr. Approx., 26(2):289–315. [doi:10.1007/s00365-006-0663-2]

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, D., Lu, G., 2002. An integrated approach to shape based image retrieval. Proc. 5th Asian Conf. on Computer Vision, p.652–657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ming Gao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61163016 and 61173125)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Fw., Li, Ly., Gao, Sm. et al. A deep learning approach to the classification of 3D CAD models. J. Zhejiang Univ. - Sci. C 15, 91–106 (2014). https://doi.org/10.1631/jzus.C1300185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300185

Key words

CLC number

Navigation