Skip to main content
Log in

A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose a new power conversion system for a permanent magnet synchronous generator (PMSG) based grid-connected wind energy conversion system (WECS) operating with fully-controlled back-to-back current-source converters. On the generator side, two independent current-source rectifiers (CSRs) with space-vector pulse width modulation (SVPWM) are employed to regulate and stabilize DC-link currents. Between DC-link and the electrical grid, a direct-type three-phase five-level current-source inverter (CSI) is inserted as a buffer to regulate real and reactive power fed to the grid and thus adjusts the grid side power-factor. We also present a current-based maximum power point tracking (MPPT) scheme, which helps the generator extract the maximum power through closed-loop regulation of the generator speed. By applying the multilevel modulation and control strategies to the grid-side five-level CSI, a multilevel output current waveform with less distortion is produced, and the bulk requirement of the output capacitor filter to eliminate the harmonic current is reduced. All the proposed concepts are verified by simulation models built in a PSIM environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh, O., Yazdani, A., 2013. A strategy for real power control in a direct-drive PMSG-based wind energy conversion system. IEEE Trans. Power Del., 28(3):1297–1305. [doi:10.1109/TPWRD.2013.2258177]

    Article  Google Scholar 

  • Bai, Z., Ma, H., Xu, D., et al., 2013. Control strategy with a generalized DC current balancing method for multimodule current-source converter. IEEE Trans. Power Electr., 29(1):366–373. [doi:10.1109/TPEL.2013. 2252628]

    Article  Google Scholar 

  • Bao, J.Y., Bao, W.B., Zhang, Z.C., 2010a. Generalized multilevel current source inverter topology with self-balancing current. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(7):555–561. [doi:10.1631/jzus.C0910605]

    Article  Google Scholar 

  • Bao, J.Y., Bao, W.B., Wang, S., et al., 2010b. Multilevel current source inverter topologies based on the duality principle. Proc. 25th Annual IEEE Applied Power Electronics Conf. and Expo, p.1097–1100. [doi:10.1109/APEC.2010. 5433367]

    Google Scholar 

  • Chung, S.K., 2000. A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electr., 15(3):431–438. [doi:10.1109/63.844502]

    Article  Google Scholar 

  • Dai, J., Xu, D., Wu, B., 2009. A novel control scheme for current-source-converter-based PMSG wind energy conversion systems. IEEE Trans. Power Electr., 24(4): 963–972. [doi:10.1109/TPEL.2008.2010259]

    Article  Google Scholar 

  • Dash, P.P., Kazerani, M., 2011. Dynamic modeling and performance analysis of a grid-connected current-source inverter-based photovoltaic system. IEEE Trans. Sustain. Energy, 2(4):443–450. [doi:10.1109/TSTE.2011.2149551]

    Article  Google Scholar 

  • Dupczak, B.S., Perin, A.J., Heldwein, M.L., 2012. Space vector modulation strategy applied to interphase transformers-based five-level current source inverters. IEEE Trans. Power Electr., 27(6):2740–2751. [doi:10.1109/TPEL. 2011.2177479]

    Article  Google Scholar 

  • Melício, R., Mendes, V.M.F., Catalão, J.P.S., 2010. Power converter topologies for wind energy conversion systems: integrated modeling, control strategy and performance simulation. Renew. Energy, 35(10):2165–2174. [doi:10. 1016/j.renene.2010.03.009]

    Article  Google Scholar 

  • Melício, R., Mendes, V.M.F., Catalão, J.P.S., 2011. Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems. Energy, 36(1):520–529. [doi:10.1016/j.energy.2010.10.012]

    Article  Google Scholar 

  • Nikolic, A., Jeftenic, B., 2010. Current source converter topologies for PMSG wind turbine applications. Proc. 14th Int. Power Electronics and Motion Control Conf., p.S14-27–S14-32. [doi:10.1109/EPEPEMC.2010.5606535]

    Google Scholar 

  • Popat, M., Wu, B., Liu, F., et al., 2012a. Coordinated control of cascaded current-source converter based offshore wind farm. IEEE Trans. Sustain. Energy, 3(3):557–565. [doi:10. 1109/TSTE.2012.2191986]

    Article  Google Scholar 

  • Popat, M., Wu, B., Zargari, N.R., 2012b. A novel decoupled interconnecting method for current-source converter-based offshore wind farms. IEEE Trans. Power Electr., 27(10):4224–4233. [doi:10.1109/TPEL.2012.2191982]

    Article  Google Scholar 

  • Popat, M., Wu, B., Zargari, N.R., 2013. Fault ride-through capability of cascaded current-source converter-based offshore wind farm. IEEE Trans. Sustain. Energy, 4(2): 314–323. [doi:10.1109/TSTE.2012.2223246]

    Article  Google Scholar 

  • Sahan, B., Araújo, S.V., Nöding, C., et al., 2011. Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems. IEEE Trans. Power Electr., 26(8):2304–2318. [doi:10. 1109/TPEL.2010.2096827]

    Article  Google Scholar 

  • Senturk, O.S., Helle, L., Munk-Nielsen, S., et al., 2012. Power capability investigation based on electrothermal models of press-pack IGBT three-level NPC and ANPC VSCs for multimegawatt wind turbines. IEEE Trans. Power Electr., 27(7):3195–3206. [doi:10.1109/TPEL.2011.2182661]

    Article  Google Scholar 

  • Sharma, S., Singh, B., 2012. Control of permanent magnet synchronous generator-based stand-alone wind energy conversion system. IET Power Electr., 5(8):1519–1526. [doi:10.1049/iet-pel.2011.0367]

    Article  MathSciNet  Google Scholar 

  • Singh, M., Khadkikar, V., Chandra, A., 2011. Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system. IET Power Electr., 4(1):122–130. [doi:10.1049/iet-pel. 2009.0132]

    Article  Google Scholar 

  • Teshirogi, T., Nishikata, S., 2011. Effects of system parameters on the performance characteristics of a wind turbine generating system using a current-source thyristor inverter. IEEE Trans. Ind. Appl., 47(1):252–257. [doi:10. 1109/TIA.2010.2091376]

    Article  Google Scholar 

  • Wang, J.C., Dai, J.Y., Wu, B., et al., 2011. Megawatt wind energy conversion system with diode rectifier and multilevel current source inverter. Proc. IEEE Energy Conversion Congress and Exposition, p.871-876. [doi:10. 1109/ECCE.2011.6063862]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-yu Bao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51277164) and the Natural Science Foundation of Zhejiang Province, China (No. Y1111002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Jy., Bao, Wb. & Li, Yl. A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters. J. Zhejiang Univ. - Sci. C 15, 232–240 (2014). https://doi.org/10.1631/jzus.C1300231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300231

Key words

CLC number

Navigation