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Abstract:    The frequent outbreak of severe foodborne diseases (e.g., haemolytic uraemic syndrome and Listeriosis) in 2011 
warns of a potential threat that world trade could spread fatal pathogens (e.g., enterohemorrhagic Escherichia coli). The epidemic 
potential from trade involves both intra-proliferation and inter-diffusion. Here, we present a worldwide vegetable trade network 
and a stochastic computational model to simulate global trade-mediated epidemics by considering the weighted nodes and edges of 
the network and the dual-scale dynamics of epidemics. We address two basic issues of network structural impact in global epi-
demic patterns: (1) in contrast to the prediction of heterogeneous network models, the broad variability of node degree and edge 
weights of the vegetable trade network do not determine the threshold of global epidemics; (2) a ‘penetration effect’, by which 
community structures do not restrict propagation at the global scale, quickly facilitates bridging the edges between communities, 
and leads to synchronized diffusion throughout the entire network. We have also defined an appropriate metric that combines 
dual-scale behavior and enables quantification of the critical role of bridging edges in disease diffusion from widespread trading. 
The unusual structure mechanisms of the trade network model may be useful in producing strategies for adaptive immunity and 
reducing international trade frictions. 
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1  Introduction 

A large body of theoretical literature discusses 
how network structures may shape the spread of in-
fectious diseases and influence the design of optimal 
control strategies (Pastor-Satorras and Vespignani, 
2001; Eguíluz and Klemm, 2002; Newman, 2002; 
Gang et al., 2005; Colizza et al., 2006; 2007; Balcan 
et al., 2009; Rocha et al., 2010). Such works usually 
focus on the network describing direct human inter-
actions (Khan et al., 2009; Cauchemez et al., 2011); 
however, recent infection of enterohemorrhagic Es-

cherichia coli (EHEC) in Europe (Dolgin, 2011; 
Frank et al., 2011; Kupferschmidt, 2011a; 2011b) and 
Listeria monocytogenes in the United States (Bennet, 
2011) poses a new challenge to the established ap-
proach, which for several reasons is not an appropri-
ate one to explore such diseases mediated by trade 
networks. First, trade-mediated epidemics involve 
indirect interactions between humans and tradable 
goods (e.g., infected people in Germany diffused 
EHEC to the environment via waste, and then in-
fected other people by native vegetables) in addition 
to simple direct human interactions (Khan et al., 2009; 
Cauchemez et al., 2011); hence, the classical SIR 
(susceptible-infectious-recovered) or SIS (suscepti-
ble-infectious-susceptible) model cannot handle this 
behavior (Dolgin, 2011). Second, trade-mediated 
diseases involve dual-scale processes: proliferation 
within a country and worldwide diffusion (Dolgin, 
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2011). The epidemic and immunity mechanisms are 
completely different between the two processes; for 
example, import and export quarantine measures are 
usually more rigorous than measures within the 
boundaries of countries. Finally, trade is not a simple 
transportation of materials or goods, but is closely 
related to international politics, economics, and soci-
ety (Chase-Dunn et al., 2000); hence, regulation of 
trade should be more rational and cautious. These 
new features and uncertainties affect our ability to 
assess the global behavior of trade-mediated diseases 
and control their diffusion. 

Motivated by these features and challenges, we 
propose a dual-scale network epidemic model, in-
cluding the full Food and Agriculture Organization 
(FAO) of the United Nations database, to study the 
interplay among network structure and stochastic 
features of infection dynamics in defining the global 
diffusion of epidemics. In particular, previous studies 
have generally focused on the structural analysis of 
network connections (Khan et al., 2009; Cauchemez 
et al., 2011), but the network and dynamic models 
presented here explicitly address the effects of dual- 
scale activities. Moreover, the distinct pattern and 
effects of community structures are identified to ex-
plain peculiar epidemic phenomena in trade networks. 
Finally, such a detailed description provides an op-
portunity to construct an effective strategy to control 
global epidemics via trade networks.  

 
 

2  Vegetable trade network heterogeneity 
 

FAO provides a world list of 254 countries and 
territories with 574 traded agricultural products. Be-
cause vegetables have been reported as the most 
probable vector of EHEC in the outbreak of  
 

 
 
 
 
 
 
 
 
 
 

haemolytic uraemic syndrome in Germany, vegetable 
production and trade are the focus of this study. The 
resulting vegetable trade network (VTN) is a dual- 
weighted graph comprising 254 weighted nodes de-
noting countries, whose weights are their vegetable 
production wi, and 4243 weighted edges, whose 
weights wij account for the direct vegetable trade 
between countries i and j. This data set was compiled 
by removing nodes with only input or output edges; 
thus, these nodes cannot transport infectious diseases. 
The final network contains N=118 nodes and M=3879 
edges, accounting for 99% of worldwide vegetable 
production and trade. According to previous studies, 
the presence of small-world, heterogeneous topology, 
and weight distribution in VTN indicates a possible 
major impact on disease-spreading behavior (Serrano 
and Boguñá, 2003). 

1. A ubiquitous topological character is the 
so-called small-world property (Watts and Strogatz, 
1998; Amaral et al., 2000). In a small-world network, 
pairs of nodes are connected by short paths, as ex-
pected for a random graph. In VTN, 56% of pairs of 
nodes are connected by two or fewer steps, and the 
average shortest path between the 118 countries is 
very short, d=1.76 (small world effect), which is the 
shortest among all global network models being 
compared (Newman, 2003; Serrano and Boguñá, 
2003; Guimerà et al., 2005; Colizza et al., 2006; Hu 
and Zhu, 2009) (Table 1). Additionally, some coun-
tries that are physically distant are still close to each 
other in the network, and the diameter of VTN (the 
largest length of the shortest pathway) is only 4. More 
generally, d grows logarithmically with the increase 
of the number of countries in the network (d<log N). 
In addition to short distance, local clustering is bound 
up with the small-world property of the complex 
networks (Guimerà et al., 2005). The clustering  
 

 
 
 

 
 
 
 
 

 
 

Table 1  Comparison of global complex networks 

Network Type of graph n m Degree distribution <k> <d> C R 

VTN Directed 118 3879 pk~e−k/65.75 65.75  1.76 0.66 − 

WTW Directed 179 7510 pk~k−2.6 83.91  1.80 0.65 − 

Internet Undirected 10 697 31 992 pk~k−2.5   5.98  3.31 0.39 − 

WWW Directed 269 504 1 497 135 pk~k−2.1   5.55 11.27 0.29 − 

ATN Directed 3880 18 810 pk~k−2.0   9.70  4.73 0.62 + 

WMTN Directed 878 7955 pk~k−2.3 18.12  3.60 0.40 + 

VTN: Vegetable Trade Network; WTW: Worldwide Trade Web; WWW: World Wide Web; ATN: Air Transportation Network; WMTN: 
Worldwide Maritime Transportation Network. n: total number of vertices; m: total number of edges; <k>: mean degree; <d>: mean  
vertex-vertex distance; C: clustering coefficient; R: degree correlation coefficient (+ is positive correlation, and – is negative correlation) 
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coefficient, C, quantifies the local cliquishness of a 
network, and is defined as the probability that two 
countries directly connected to a third country are also 
directly connected to each other (Newman, 2003). C 
is typically larger in VTN than in a random graph and 
other worldwide networks (Table 1).  

2. Another topological aspect of epidemics of 
complex networks is the degree of distribution—the 
distribution of the number of links of the nodes 
(Newman, 2003). Many real-world networks (e.g., 
Internet and metabolic networks) have only some 
nodes that are significantly more connected than 
others (Clauset et al., 2009). In VTN, however, the 
probability distribution that country i has ki connec-
tions (degree of nodes) to other countries exhibits an 
exponential distribution, p(k)~e−k/μ/μ, with a very 
large average value, μ=65.75 (Fig. 1a). It is more 
heterogeneous than other human epidemic networks 
(e.g., air-transportation networks and social networks) 
and general worldwide trade webs (Table 1). Non- 
trade networks exhibit heavy-tail distribution and a 
relatively low mean degree of each node (Table 1).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Combining the topological analysis of small-world 
and degree distribution, we can conclude that the 
VTNs have extra high connecting density (the highest 
among the worldwide networks listed in Table 1); 
hence, the epidemics among countries might be bar-
rier free (Kuperman and Abramson, 2001; Newman, 
2002; Santos et al., 2005).  

3. As a weighted network (Barrat et al., 2004; 
Gang et al., 2005), the distribution of three parame-
ters, which are closely related to network weights and 
epidemic dynamics, is considered. The diffusing ratio 
of vegetables transported from node i is defined as 

 

i ij i ij
i j

w w w
 

  
 

  ,  0≤βi≤1.         (1) 

 
If all vegetables are consumed within node i, βi=0; 
otherwise, βi=1 (implying that all vegetables are ex-
ported). βi measures the relative strength of two epi-
demic activities, diffusion and proliferation. Another 
parameter that describes the diffusion behavior of 
VTN is 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Fig. 1  Degree and weight distribution of the worldwide vegetable trade network 
(a) Cumulative in- and out-degree distribution plotted in double-logarithmic scale, with exponential tails. (bd) Cumulative 
distribution of three weight-related parameters plotted in double-logarithmic scale, including diffusion ratio β, allotting pro-
portion to neighbor γ, and pathogen volume θ. The fits of γ and θ are focusing on the tail of the data distribution. For all fits, 
R2>0.95. These distributions with exponential or power-law tails illustrate the structural heterogeneity of the vegetable trade 
network 
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ij ij ij
j

w w   ,  0≤γij≤1.                  (2) 

 

γij indicates the allotted proportion of vegetables ex-
ported to the direct neighbors of node i. If γij→0, the 
edge from node i to j is rarely used to transfer path-
ogens; if γij→1, node j is easily infected when node i 
has been infected. The pathogen volume of node i is  
 

min( )i i iC w w     ,  θi≥1,              (3) 

 
where C is a scale constant (default is 1). θi indicates 
the upper limit of the number of particles contained in 
node i, which is closely related to the vegetable pro-
duction of a country.  

The distribution of the three weights is hetero-
geneous; i.e., most nodes can hold only a few patho-
gens (θi<10 for 83% nodes) and tend to locally pro-
liferate (βi→0), and utilization of most edges is rare 
(Figs. 1b–1d). Previous studies showed that the het-
erogeneous distribution of weights might play a pos-
itive role in limiting the diffusion of diseases (Gang et 
al., 2005). 

In summary, from the statistical analysis of top-
ological features and weight distribution of VTN, a 
paradox emerges: the high-density connection pattern 
could provoke the spread of trade-mediated diseases 
(Kuperman and Abramson, 2001; Newman, 2002; 
Santos et al., 2005), while the heterogeneous weight 
distribution might restrict global epidemics (Gang et 
al., 2005). To solve the paradox, an explicit dynamic 
simulation is necessary to clarify the actual role of 
VTN in disease diffusion. 

3  Modeling and analyzing dual-scale epi-
demics 

In each Monte Carlo step, we randomly per-
formed reaction and diffusion according to the 
probability defined in Eqs. (1)–(3). Initial conditions 
were constructed in a randomly chosen node as the 
source of diseases and one particle to the node. Tran-
sients were discarded and simulations were run long 
enough so that the initial conditions did not affect the 
results. 

To investigate a solution to the structural para-
dox and simulate the unique behavior of trade-  
mediated diseases, a model based on the reaction 

diffusion process was developed to study the dynamic 
behavior of infectious diseases spreading via a dual- 
weighted VTN (Fig. 2). Reaction diffusion processes 
generally include particles (representing active dis-
ease pathogens) that react locally and diffuse globally 
(Colizza et al., 2007). In this model, each particle in a 
node would experience three processes in a discrete 
time step: extinction, reaction, and diffusion. Initially, 
a particle goes to extinction with probability 1−αi  
(Fig. 2). All nodes are assumed to have the same ex-
tinction probability in the model. If a particle survived 
the extinction process, it can react or diffuse. With 
probability 1−βi, the particle reacts according to the 
basic reaction scheme 
 

A sA .                               (4) 
 

The coefficient s={2, 3, …} indicates the ca-
pacity of proliferation; i.e., one particle could prolif-
erate into s new particles. Because the value of s af-
fects only the minimum α for global epidemics, s is 
fixed to 2 in this model. At any node, the total number 
of particles cannot exceed pathogen volume θi. Par-
ticles in node i diffuse to one of its direct neighbors, j, 
according to probability γij. The evolution of the 
model starts with one particle in a certain node, si-
multaneously updates the status for each node, and 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2  Reaction diffusion model in networks 
Schematic representation of a pathogen particle reacting 
within an infected node i and diffusing to a healthy node j. 
Solid arrows represent the probability of corresponding ac-
tivities; tree dashed lines indicate the full process of extinc-
tion (with probability 1–α), reaction, and diffusion of a par-
ticle. Note that the occupation number of each node can 
assume any integer value less than pathogen volume θ, as 
defined in Eq. (3) 

Reaction

Diffusion

Infected node i

α 1−α

1−βi βi

Healthy node j

Extinction

γij
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finally stops with no surviving particle or all nodes 
infected. Two indicators of epidemic dynamics can be 
deduced from the model: the number of evolution 
steps before all nodes are infected (T), and the pro-
portion of infected nodes at stopping (U). The model 
meets the requirement of simulating trade-mediated 
infection (e.g., EHEC) via a VTN for two reasons. 
First, the reaction diffusion model is analogous to 
classic models (e.g., SIS and SIR models in Newman 
(2002)) that hold typical epidemic properties (e.g., 
phase transition and threshold). Second, the model 
could distinguish the effect of dual-scale mechanisms 
in international trade and intra-national production by 
rationally integrating parameters from both network 
topology and weights. In the following, the results 
refer to this specific epidemic model. 

For a single node i with one particle, the prob-
ability distribution of particles under the extinction, 
reaction, and diffusion process can be described by 
two generating functions: 

 

( ) (1 ),   ( ) (1 ) .s
i if x x g x x             (5) 

 

The nest of f(x) and g(x) provides the distribution of 
particles in node i in one reaction and diffusion: 

 

( ) ( ( )) (1 ) [1 (1 )]s
i ih x f g x x         .   (6) 

 
Hence, the distribution of particles in any time step t 
is t-times iteration of h(x). The average number of 
diffusing particles is  

 

2

(1) ( (1))
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    
 

 
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

           (7) 

 
where ε=αβi is the probability that a particle can be 
diffused. The calculation of D is based on θi=inf. 
Obviously, finite θi will reduce the value of D. Con-
sidering the classical result of the branching process, 
the threshold of the model is D=1. Thus, we have 
 

1

1 ( 1)(1 )is




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.                     (8) 

 
For s=2 and 0≤βi≤1, αmin=0.5. Therefore, the thresh-

old of our model is closely related to the values of β 
and θ. Note that the derivation is based on the as-
sumptions that the size of the baseline network is 
infinite and that the distribution of degree and weights 
is homogeneous. 

Considering node i has k out-edges and allotting 
proportion is γij, j=1, 2, …, k, we can calculate the 
probability distribution of the number of edges used 
(i.e., transporting the pathogen particles). When D 
particles are diffused from node i, the distribution is 

 

1

( ) ( )
k

D j
j

U x T x


 ,                        (9) 

 

where Tj(x)=[1−(1−γij)
D]x+(1−γij)

D. Therefore, the 
average number of edges used is 
 

1

(1) (1 )
k

D
D ij

j

U k 


    .               (10) 

 

When focusing on the situation at the threshold point 
(D=1), we found U1′(1)=1, which is unrelated to de-
gree k and allotting proportion γij. However, these two 
parameters could affect the epidemic speed when 
D>1. 

If we assign different survival probabilities to the 
reaction and diffusion process for reflecting different 
immunity mechanisms in intra- and inter-dynamics, 
we can map this behavior to the current model. The 
behavior is: (1) A particle is chosen to react (with 
probability 1−βi′) or diffuse (with probability βi′); (2) 
When reacting, the particle survives with probability 
α′; (3) When diffusing, the particle survives with 
probability α″. This behavior can be described using 
the current model by redefining the parameters as 

 

(1 )
(1 ) ,   

1
i

i i i

 
     



      


.      (11) 

 

Usually, quarantine measures of international trades 
are usually more rigorous than measures within a 
country (α′>α″); hence, βi<βi′. It means that the dif-
ferent survival probabilities will lead to less oppor-
tunity for diffusion between different countries. Be-
cause the results of this study are based on a power 
law distribution with cutoff of βi (Fig. 1), current 
conclusions are also fit for the situation of different 
survival probabilities. Therefore, the model could 
distinguish the behavior of dual-scale mechanisms. 
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4  Effects of topological and weighted het-
erogeneity 

To ascertain the role of heterogeneous distribu-
tion of different structural factors in the spatio-  
temporal pattern of the epidemic process, the evolu-
tion of epidemics obtained from the actual VTN is 
compared to those obtained from three homogeneous 
network models providing null hypotheses (Fig. 3). 
The first model network is the homogeneous diffusion 
ratio network (HDRN), in which β=0.5 for all nodes, 
which means that the proliferation and diffusion of 
particles are balanced. The second model is the ho-
mogeneous allotting proportion network (HAPN), in 
which γij=1/k (k is the out-degree of node i), which 
means that the diffusion is homogeneous for all 
neighbors. HDRN and HAPN retain the exact topol-
ogy and other parameters of the actual VTN except 
for parameters in the homogeneous hypotheses. The 
third model, homogeneous node degree network 
(HNDN), is a homogeneous Erdos-Rényi random 
network with the same N, <k>, and βi as in VTN, and 
γij=1/k as in HAPN for each node. In all homogeneous 
models, the volume of pathogens, θi, is equal to that of 
the real VTN with C=1 (VTN1). We also test the effect 
of θi with a different scaling constant C=0.01 on VTN 
(VTN0.01). The larger C indicates that every country 
could contain more pathogens, but the proportions of 
pathogen volumes of different countries are unaltered. 
The difference between the behavior observed in the 
homogeneous models and that in actual cases pro-
vides striking evidence for a direct relationship  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

between heterogeneous structure and epidemic pat-
tern. The HAPN and HNDN models display the same 
epidemic threshold and average infected proportion 
as VTN1. However, a different scenario is observed 
for HDRN and VTN0.01, where the epidemic threshold 
is significantly larger than that of VTN1 (Fig. 3a). 
Indeed, the analytical inspection of the epidemic 
equations shows that the ratios βi and the volume of 
pathogens play a critical role in the global diffusion of 
trade-mediated diseases. Additionally, Fig. 3b reports 
the average number of evolution steps before all 
nodes are infected after the epidemic threshold (i.e., 
convergence time). The homogeneous distribution γ 
could lead to a higher convergence speed for infecting 
all nodes, because it avoids the gathering of the output 
pathogens from a node in a few neighbor nodes. 
Strikingly, the number of infected nodes and con-
vergence time obtained are both similar for HAPN 
and HNDN (Fig. 3), indicating that the heterogeneous 
degree distribution does not affect the overall prop-
erties of the epidemic pattern, including the epidemic 
threshold and speed for global epidemics. The reason 
might be an extra high average degree (Table 1), by 
which the effects of heterogeneous connections are 
shaded (Newman, 2003). Contrarily, βi and θi have 
significant impact on the threshold and convergence 
speed of epidemics of VTN. Although previous 
studies showed that the overall epidemic behavior is 
determined by heterogeneous inter-connection pat-
terns (Newman, 2002; Gang et al., 2005; Colizza et 
al., 2006), our dual-scale model emphasizes the crit-
ical role of intra-dynamics in determining the epi-
demic threshold and speed. 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3  Phase diagrams of epidemics of the vegetable trade network 
(a) Phase transition lines show the average infectious ratio for five network models under different survival probabilities, α; 
lines indicate the epidemic threshold of network models. (b) Lines illustrate the average number of evolution steps before 
complete infection of five network models when α is larger than thresholds. VTN1 and VTN0.01 have the same original 
structure and weights of the vegetable trade network but with different pathogen volumes (C=1 and 0.01 in Eq. (3), re-
spectively). HDRN, HAPN, and HNDN represent hypothetic network models with homogeneous diffusion ratio, allotting 
proportion, and node degree, respectively 
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More interestingly, although parameters βi and θi 
have significant impact on the overall epidemic pat-
terns, their behaviors are different. VTN0.01 displays a 
requirement of a high probability of survival (α) of the 
epidemics with a long convergence time; however, 
HDRN shows a high threshold with a short conver-
gence time. Indeed, the rise of βi or the drop of θi 
could limit the proliferation within nodes and lead to 
increase in the threshold. A low βi also enhances the 
diffusion and raises the epidemic speed. With a large 
θi, the threshold of actual VTN1 is very close to the 
theoretical minimum of α (α=0.5 for s=2) to maintain 
a global infection. This clarifies the paradox between 
topology and weights; i.e., the dominant effect of the 
heterogeneous distribution of βi proves that VTN 
actually instigates the global spread of infectious 
diseases. In summary, more attention should be paid 
to controlling infections within countries rather than 
global trade patterns. Such strategies could help re-
duce international trade friction, for example, the 
argument between Germany and Spain about the 
EHEC outbreak. 

 
 

5  Effects of community structure 
 

Community structure—groups of nodes with 
dense connectivity among them and a lower level of 
connectivity between groups—is another important 
feature of complex networks that could limit the 
transmission of infectious diseases (Kitano, 2004; 
Variano et al., 2004; Salathé and Jones, 2010). 
Community structure in VTN is detected using the 
algorithm proposed by Newman and Girvan (2004) 
and Newman (2006). The algorithm is rigorous be-
cause it maximizes an explicit parameter, called 
modularity Q, identifies the number of non- 
overlapping communities, assigns membership to 
communities, and tests the significance of the results. 
Usually Q>0.3 states the significant existence of 
communities in the target networks. Feeding VTN 
with edge weights through the algorithm, the network 
is divided cleanly into six non-overlapping commu-
nities and, remarkably, the maximum modularity 
reaches 0.492. Moreover, we use a community de-
tection algorithm based on random walk to validate 
the existence of communities in VTN (Rosvall and 
Bergstrom, 2008). The results show that the lower 

bound of code length (L) of six communities is less 
than the value of one community, and thus commu-
nities exist. In fact, 83% of the total vegetable trade 
occurs within the six communities. It is similar to the 
situation of an air transportation network (Guimerà et 
al., 2005). For example, the community that contains 
Hong Kong displays a zonal distribution along the 
coasts of the Pacific and Indian Ocean, and across 
three continents and 26 countries. Therefore, in VTN, 
a network community is more accurate in reflecting 
the trade relationships than the geographical distance. 

Unexpectedly, the pattern of community struc-
ture in VTN is distinctive from current theoretical 
hypothesis, which usually assumes that only a few 
nodes link to outside of a community. In VTN, 
however, it is found that about 96% nodes have 
bridging edges (the edges connecting different 
communities), which suggests that almost all nodes 
have an opportunity of transporting disease to outside 
of a community. Moreover, 64% edges of the entire 
VTN are the bridging edges. Therefore, the connec-
tion between different communities in VTN displays 
a special pattern with dense topology but weak 
weights. The distinct pattern of community structure 
implies a peculiar role in global epidemics, and can be 
used to make more effective strategies to control 
trade-mediated epidemics. 

Community is an effective structural pattern for 
containing damage and diseases locally to minimize 
the effects of the whole networks, in order to ensure 
the robustness of network stability to random per-
turbation (Kitano, 2004; Variano et al., 2004). Sur-
prisingly, the global spread of infectious diseases is 
not limited by the existence of communities in VTN. 
The infection processes within the source community 
which contains the node with the initial particle, are 
approximately synchronous with the non-source 
community and the overall VTN (Figs. 4a and 4b). 
This implies a failure of the community structure in 
which pathogens quickly stride over the boundary of 
the source community and diffuse to other communi-
ties across bridging edges. The cross-activity ratio, 
which is the proportion of particles across community 
boundaries at each step, is plotted in Fig. 4c. There is 
a nonlinear change of the number of active bridging 
edges, from which about 40% transmission is cross- 
activity in the initial epidemic period (accounting for 
only 3% of the total epidemic duration), and then the 
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cross-activity decreases to ~20%, and finally in-
creases to ~40% at the end of epidemics. This proves 
that the bridging edges play a critical role in the early 
stage of global epidemics via VTN. Although com-
munity structure fails to limit infection, the existence 
of bridging edges provides an opportunity to formu-
late strategies to control global epidemics of 
trade-mediated diseases. 

To discriminate the role of bridging edges in the 
spatio-temporal pattern of the epidemic process, we 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
aim to quantitatively analyze the bridging edges for 
effectively transporting diseases. An infectious proc-
ess is assumed to start from a node i with one patho-
gen particle, where an initiative node cannot be in-
fected by other nodes again. At each time step t (t≥0), 
the average number of exporting particles from node i 
is provided by st+1αt(1−βi)

t+1βi. Because α is identical 
among all nodes, we set α=1 for simplification. We 
can therefore define the probability of at least one 
particle passing through an edge with γij before time t 

Fig. 4  Community effects on epidemic dynamics 
(a, b) Change of the infected ratio and the number of infected nodes of the entire network, source community, and non-source 
communities. The source community contains the initial pathogen particle, which is randomly chosen from all nodes in simu-
lation. (c) Change of the cross-activity ratio along with the infectious process. The cross-activity is defined as the diffusion 
between different communities. The time axis in (a)(c) is normalized to [0, 1], divided by the total number of steps for each 
simulation. (d) The power law with cutoff distribution of importance of bridging edges, which is quantified by the edge im-
portance defined in Eq. (10). For the fit, R2>0.95. (e) The lines indicate the proportion of remaining cross-activities after 
knocking out certain edges. The sequence of knockout follows the descending rank of edge importance and trade quantity 



Jin et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2014 15(4):265-274 273

as  
 

1 1(1 )

0

(1 ) .
t t

i i

t
s

ij ij
k

U  
 



               (12) 

 

Uij is the function of s, β, and γ; hence, it could inte-
grate the dual-scale epidemic behaviors. We can set a 
small t (t=5 in this study) for evaluating the edge 
importance at the early epidemic stage. 

Based on Uij, the importance of all bridging 
edges can be quantified. The cutoff power law dis-
tribution (Clauset et al., 2009) of Uij (Fig. 4d) sug-
gests that only a few bridging edges are critical in 
quickly transporting disease between communities in 
the early period. Based on the connecting pattern of 
bridging edges, we find that: (1) Critical bridging 
edges always transport diseases from small-trade 
countries (e.g., Belize and Gambia) to large-trade 
countries (e.g., United Kingdom, France, and Ger-
many); (2) Europe is the primary target of global 
epidemics, and is susceptible in worldwide trade. This 
result shows that the outbreak of EHEC in Europe 
implies an inevitability of globally spreading infec-
tious disease. 

Because previous work related communities to 
stability (Kitano, 2004; Variano et al., 2004), a hy-
pothesis of stability (robustness against the global 
spread of infectious diseases) was developed by sim-
ulating two disturbance scenarios of VTN. In the first 
scenario, we break bridging edges in descending or-
der of Uij, which could occur with trade control. This 
disturbance leads to a rapid decrease of cross- 
activities in the initial epidemic period, in which the 
cross-activities decrease by 70% after removing 10% 
most important bridging edges (Fig. 4e). In the second 
scenario, we break bridging edges according to the 
trade quantity. In response to this disturbance, the 
change of the level of cross-activities is more mod-
erate (losing only 38% cross-activities when remov-
ing 10% largest quantity trades) (Fig. 4e). Compared 
with a block of edges with the largest trade quantity, 
the regulation of identified links is not only more 
effective but also more economical. 

 
 

6  Conclusions 
 

This is a system analysis that has been performed 
for epidemic dynamics of trade, yielding a number of 

significant results. VTN is a small-world, high-  
density, and high-cluster heterogeneous network that 
instigates the global diffusion of diseases. Theoreti-
cally, we find that the heterogeneous distribution of 
degree and weights could not determine the overall 
epidemic pattern; however, the intra-dynamics is 
critical in trade-mediated diseases. We also identify 
the communities in the vegetable trade network and 
show that the particular connecting pattern between 
communities cannot be explained based on rare-link 
hypothesis. Moreover, the vitality of bridging edges 
leads to the failure of community structures to limit 
disease diffusion and provides a control strategy, 
which makes a practical trade-off between cost and 
efficiency in controlling global diffusion. This study 
offers an initial approach to understanding the spatial 
dual-scale epidemic dynamics of trade networks. In 
the future, temporal multi-scale characteristics should 
be considered in research on foodborne diseases. In 
fact, the tourism network plays a real-time role in 
spreading EHEC, while the role of the trade network 
is latent, i.e., a slow but durable medium to spread 
EHEC (Frank et al., 2011). This characteristic makes 
the behavior of foodborne diseases more complex and 
mysterious than diffusion processes based solely on a 
mediated network. 
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